ترغب بنشر مسار تعليمي؟ اضغط هنا

A Characteristic Mass Scale in the Mass-Metallicity Relation of Galaxies

108   0   0.0 ( 0 )
 نشر من قبل Guillermo A Blanc
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the shape of the gas-phase mass-metallicity relation (MZR) of a combined sample of present-day dwarf and high-mass star-forming galaxies using IZI, a Bayesian formalism for measuring chemical abundances presented in Blanc et al. 2015. We observe a characteristic stellar mass scale at $M_* simeq 10^{9.5}$M$_{odot}$, above which the ISM undergoes a sharp increase in its level of chemical enrichment. In the $10^{6}-10^{9.5}$M$_{odot}$ range the MZR follows a shallow power-law ($Zpropto M^{alpha}_*$) with slope $alpha=0.14pm0.08$. At approaching $M_* simeq 10^{9.5}$M$_{odot}$ the MZR steepens significantly, showing a slope of $alpha=0.37pm0.08$ in the $10^{9.5}-10^{10.5}$M$_{odot}$ range, and a flattening towards a constant metallicity at higher stellar masses. This behavior is qualitatively different from results in the literature that show a single power-law MZR towards the low mass end. We thoroughly explore systematic uncertainties in our measurement, and show that the shape of the MZR is not induced by sample selection, aperture effects, a changing N/O abundance, the adopted methodology used to construct the MZR, secondary dependencies on star formation activity, nor diffuse ionized gas (DIG) contamination, but rather on differences in the method used to measure abundances. High resolution hydrodynamical simulations can qualitatively reproduce our result, and suggest a transition in the ability of galaxies to retain their metals for stellar masses above this threshold. The MZR characteristic mass scale also coincides with a transition in the scale height and clumpiness of cold gas disks, and a typical gas fraction below which the efficiency of star formation feedback for driving outflows is expected to decrease sharply.



قيم البحث

اقرأ أيضاً

Dwarf galaxies generally follow a mass-metallicity (MZ) relation, where more massive objects retain a larger fraction of heavy elements. Young tidal dwarf galaxies (TDGs), born in the tidal tails produced by interacting gas-rich galaxies, have been t hought to not follow the MZ relation, because they inherit the metallicity of the more massive parent galaxies. We present chemical evolution models to investigate if TDGs that formed at very high redshifts, where the metallicity of their parent galaxy was very low, can produce the observed MZ relation. Assuming that galaxy interactions were more frequent in the denser high-redshift universe, TDGs could constitute an important contribution to the dwarf galaxy population. The survey of chemical evolution models of TDGs presented here captures for the first time an initial mass function (IMF) of stars that is dependent on both the star formation rate and the gas metallicity via the integrated galactic IMF (IGIMF) theory. As TDGs form in the tidal debris of interacting galaxies, the pre-enrichment of the gas, an underlying pre-existing stellar population, infall, and mass dependent outflows are considered. The models of young TDGs that are created in strongly pre-enriched tidal arms with a pre-existing stellar population can explain the measured abundance ratios of observed TDGs. The same chemical evolution models for TDGs, that form out of gas with initially very low metallicity, naturally build up the observed MZ relation. The modelled chemical composition of ancient TDGs is therefore consistent with the observed MZ relation of satellite galaxies.
We examine the relation between gas-phase oxygen abundance and stellar mass---the MZ relation---as a function of the large scale galaxy environment parameterized by the local density. The dependence of the MZ relation on the environment is small. The metallicity where the MZ relation saturates and the slope of the MZ relation are both independent of the local density. The impact of the large scale environment is completely parameterized by the anti-correlation between local density and the turnover stellar mass where the MZ relation begins to saturate. Analytical modeling suggests that the anti-correlation between the local density and turnover stellar mass is a consequence of a variation in the gas content of star-forming galaxies. Across $sim1$ order of magnitude in local density, the gas content at a fixed stellar mass varies by $sim5%$. Variation of the specific star formation rate with environment is consistent with this interpretation. At a fixed stellar mass, galaxies in low density environments have lower metallicities because they are slightly more gas-rich than galaxies in high density environments. Modeling the shape of the mass-metallicity relation thus provides an indirect means to probe subtle variations in the gas content of star-forming galaxies.
132 - Ivo Saviane 2014
Our research on the age-metallicity and mass-metallicity relations of galaxies is presented and compared to the most recent investigations in the field. We have been able to measure oxygen abundances using the direct method for objects spanning four orders of magnitude in mass, and probing the last 4 Gyr of galaxy evolution. We have found preliminary evidence that the metallicity evolution is consistent with expectations based on age-metallicity relations obtained with low resolution stellar spectra of resolved Local Group galaxies.
116 - L. Michel-Dansac 2008
We study the mass-metallicity relation of galaxies in pairs and in isolation taken from the SDSS-DR4 using the stellar masses and oxygen abundances derived by Tremonti et al. (2004). Close galaxy pairs, defined by projected separation r_p < 25kpc/h a nd radial velocity Delta_V < 350 km/s, are morphologically classified according to the strength of the interaction signs. We find that only for pairs showing signs of strong interactions, the mass-metallicity relation differs significantly from that of galaxies in isolation. In such pairs, the mean gas-phase oxygen abundances of galaxies with low stellar masses (Mstar ~< 10^9 Msun/h) exhibit an excess of 0.2 dex. Conversely, at larger masses (Mstar >~ 10^10 Msun/h) galaxies have a systematically lower metallicity, although with a smaller difference (-0.05 dex). Similar trends are obtained if g-band magnitudes are used instead of stellar masses. In minor interactions, we find that the less massive member is systematically enriched, while a galaxy in interaction with a comparable stellar mass companion shows a metallicity decrement with respect to galaxies in isolation. We argue that metal-rich starbursts triggered by a more massive component, and inflows of low metallicity gas induced by comparable or less massive companion galaxies, provide a natural scenario to explain our findings.
280 - N. Vale Asari 2009
We have obtained the mass-metallicity (M-Z) relation at different lookback times for the same set of galaxies from the Sloan Digital Sky Survey, using the stellar metallicities estimated with our spectral synthesis code STARLIGHT. We have found that this relation steepens and spans a wider range in both mass and metallicity at higher redshifts. We have modeled the time evolution of stellar metallicity with a closed-box chemical evolution model, for galaxies of different types and masses. Our results suggest that the M-Z relation for galaxies with present-day stellar masses down to 10^10 M_sun is mainly driven by the history of star formation history and not by inflows or outflows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا