ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong-coupling mechanism of the pseudogap in small Hubbard clusters

206   0   0.0 ( 0 )
 نشر من قبل Edwin Huang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Edwin W. Huang




اسأل ChatGPT حول البحث

In the hole-doped cuprates, the pseudogap refers to a suppression of the density of states at low energies, in the absence of superconducting long-range order. Numerous calculations of the Hubbard model show a pseudogap in the single-particle spectra, with striking similarities to photoemission and tunneling experiments on cuprates. However, no clear mechanism has been established. Here, we solve the Hubbard model on $2times2$ clusters by exact diagonalization, with integration over twisted boundary conditions. A pseudogap is found in the single-particle density of states with the following characteristics: a decreasing energy scale and onset temperature for increased hole-doping, closure at a critical hole doping near 15%, absence upon electron-doping, particle-hole asymmetry indicated by the location of the gap center, and persistence in the strong-coupling limit of $U/t to infty$. Studying the many-body excitation spectrum reveals that the pseudogap in single-particle spectra is due to orthogonality between bare electrons and the lowest energy excitations for $U/t gtrsim 8$.

قيم البحث

اقرأ أيضاً

We analyze the pseudogap phenomenon of hole-doped cuprates via a Feynman-diagrammatic inspection of the Hubbard model. Our approach captures the pivotal interplay between Mott localization and Fermi surface topology beyond weak-coupling spin fluctuat ions, which open a spectral gap near hot spots. We show that strong coupling and particle-hole asymmetry give rise to another mechanism: the spin-fermion vertex develops a large imaginary part. While its real part always suppresses the electronic lifetime, the imaginary part has a twofold effect. For antinodal fermions a gap opening is boosted; conversely, around the node Fermi arcs are protected.
We analyze the quantum phase diagram of the Holstein-Hubbard model using an asymptotically exact strong-coupling expansion. We find all sorts of interesting phases including a pair-density wave (PDW), a charge 4e (and even a charge 6e) superconductor , regimes of phase separation, and a variety of distinct charge-density-wave (CDW), spin-density-wave (SDW) and superconducting regimes. We chart the crossovers that occur as a function of the degree of retardation, i.e. the ratio of characteristic phonon frequency to the strength of interactions.
A strong-coupling expansion for models of correlated electrons in any dimension is presented. The method is applied to the Hubbard model in $d$ dimensions and compared with numerical results in $d=1$. Third order expansion of the Green function suffi ces to exhibit both the Mott metal-insulator transition and a low-temperature regime where antiferromagnetic correlations are strong. It is predicted that some of the weak photoemission signals observed in one-dimensional systems such as $SrCuO_2$ should become stronger as temperature increases away from the spin-charge separated state.
A pair-density-wave (PDW) is a novel superconducting state with an oscillating order parameter. A microscopic mechanism that can give rise to it has been long sought but has not yet been established by any controlled calculation. Here we report a den sity-matrix renormalization group (DMRG) study of an effective $t$-$J$-$V$ model, which is equivalent to the Holstein-Hubbard model in a strong-coupling limit, on long two-, four- and six-leg triangular cylinders. While a state with long-range PDW order is precluded in one dimension, we find strong quasi-long-range PDW order with a divergent PDW susceptibility as well as spontaneous breaking of time-reversal and inversion symmetries. Despite the strong interactions, the underlying Fermi surfaces and electron pockets around the $K$ and $K^prime$ points in the Brillouin zone can be identified. We conclude that the state is valley-polarized and that the PDW arises from intra-pocket pairing with an incommensurate center of mass momentum. In the two-leg case, the exponential decay of spin correlations and the measured central charge $capprox 1$ are consistent with an unusual realization of a Luther-Emery liquid.
106 - Yusuke Kamogawa , Joji Nasu , 2019
We study a ferromagnetic instability in a doped single-band Hubbard model by means of dynamical mean-field theory with the continuous-time quantum Monte Carlo simulations. Examining the effect of the strong correlations in the system on the hypercubi c and Bethe lattice, we find that the ferromagnetically ordered state appears in the former, while it does not in the latter. We also reveal that the ferromagnetic order is more stable in the case that the noninteracting DOS exhibits a slower decay in the high-energy region. The present results suggest that, in the strong-coupling regime, the high-energy part of DOS plays an essential role for the emergence of the ferromagnetically ordered state, in contrast to the Stoner criterion justified in the weak interaction limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا