ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin scattering turns complex at strong coupling: the key to pseudogap and Fermi arcs in the Hubbard model

79   0   0.0 ( 0 )
 نشر من قبل Friedrich Krien
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the pseudogap phenomenon of hole-doped cuprates via a Feynman-diagrammatic inspection of the Hubbard model. Our approach captures the pivotal interplay between Mott localization and Fermi surface topology beyond weak-coupling spin fluctuations, which open a spectral gap near hot spots. We show that strong coupling and particle-hole asymmetry give rise to another mechanism: the spin-fermion vertex develops a large imaginary part. While its real part always suppresses the electronic lifetime, the imaginary part has a twofold effect. For antinodal fermions a gap opening is boosted; conversely, around the node Fermi arcs are protected.

قيم البحث

اقرأ أيضاً

We analyze the quantum phase diagram of the Holstein-Hubbard model using an asymptotically exact strong-coupling expansion. We find all sorts of interesting phases including a pair-density wave (PDW), a charge 4e (and even a charge 6e) superconductor , regimes of phase separation, and a variety of distinct charge-density-wave (CDW), spin-density-wave (SDW) and superconducting regimes. We chart the crossovers that occur as a function of the degree of retardation, i.e. the ratio of characteristic phonon frequency to the strength of interactions.
A pair-density-wave (PDW) is a novel superconducting state with an oscillating order parameter. A microscopic mechanism that can give rise to it has been long sought but has not yet been established by any controlled calculation. Here we report a den sity-matrix renormalization group (DMRG) study of an effective $t$-$J$-$V$ model, which is equivalent to the Holstein-Hubbard model in a strong-coupling limit, on long two-, four- and six-leg triangular cylinders. While a state with long-range PDW order is precluded in one dimension, we find strong quasi-long-range PDW order with a divergent PDW susceptibility as well as spontaneous breaking of time-reversal and inversion symmetries. Despite the strong interactions, the underlying Fermi surfaces and electron pockets around the $K$ and $K^prime$ points in the Brillouin zone can be identified. We conclude that the state is valley-polarized and that the PDW arises from intra-pocket pairing with an incommensurate center of mass momentum. In the two-leg case, the exponential decay of spin correlations and the measured central charge $capprox 1$ are consistent with an unusual realization of a Luther-Emery liquid.
Cooperation and competition between the antiferromagnetic, d-wave superconducting and Mott-insulating states are explored for the two-dimensional Hubbard model including nearest and next-nearest-neighbor hoppings at zero temperature. Using the variat ional cluster approach with clusters of different shapes and sizes up to 10 sites, it is found that the doping-driven transition from a phase with microscopic coexistence of antiferromagnetism and superconductivity to a purely superconducting phase is discontinuous for strong interaction and accompanied by phase separation. At half-filling the system is in an antiferromagnetic Mott-insulating state with vanishing charge compressibility. Upon decreasing the interaction strength U below a certain critical value of roughly U=4 (in units of the nearest-neighbor hopping), however, the filling-dependent magnetic transition changes its character and becomes continuous. Phase separation or, more carefully, the tendency towards the formation of inhomogeneous states disappears. This critical value is in contrast to previous studies, where a much larger value was obtained. Moreover, we find that the system at half-filling undergoes the Mott transition from an insulator to a state with a finite charge compressibility at essentially the same value. The weakly correlated state at half-filling exhibits superconductivity microscopically admixed to the antiferromagnetic order. This scenario suggests a close relation between phase separation and the Mott-insulator physics.
We present a first-principle study of spin-orbit coupling effects on the Fermi surface of Sr2RuO4 and Sr2RhO4. For nearly degenerate bands, spin-orbit coupling leads to a dramatic change of the Fermi surface with respect to non-relativistic calculati ons; as evidenced by the comparison with experiments on Sr2RhO4, it cannot be disregarded. For Sr2RuO4, the Fermi surface modifications are more subtle but equally dramatic in the detail: spin-orbit coupling induces a strong momentum dependence, normal to the RuO2 planes, for both orbital and spin character of the low-energy electronic states. These findings have profound implications for the understanding of unconventional superconductivity in Sr2RuO4.
A considerable success in phenomenological description of high-T$_{rm c}$ superconductors has been achieved within the paradigm of Quantum Critical Point (QCP) - a parental state of a variety of exotic phases that is characterized by dense entangleme nt and absence of well-defined quasiparticles. However, the microscopic origin of the critical regime in real materials remains an open question. On the other hand, there is a popular view that a single-band $t-t$ Hubbard model is the minimal model to catch the main relevant physics of superconducting compounds. Here, we suggest that emergence of the QCP is tightly connected with entanglement in real space and identify its location on the phase diagram of the hole-doped $t-t$ Hubbard model. To detect the QCP we study a weighted graph of inter-site quantum mutual information within a four-by-four plaquette that is solved by exact diagonalization. We demonstrate that some quantitative characteristics of such a graph, viewed as a complex network, exhibit peculiar behavior around a certain submanifold in the parametric space of the model. This method allows us to overcome difficulties caused by finite size effects and to identify the transition point even on a small lattice, where long-range asymptotics of correlation functions cannot be accessed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا