ترغب بنشر مسار تعليمي؟ اضغط هنا

Hierarchical Federated Learning through LAN-WAN Orchestration

108   0   0.0 ( 0 )
 نشر من قبل Jinliang Yuan
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Federated learning (FL) was designed to enable mobile phones to collaboratively learn a global model without uploading their private data to a cloud server. However, exiting FL protocols has a critical communication bottleneck in a federated network coupled with privacy concerns, usually powered by a wide-area network (WAN). Such a WAN-driven FL design leads to significantly high cost and much slower model convergence. In this work, we propose an efficient FL protocol, which involves a hierarchical aggregation mechanism in the local-area network (LAN) due to its abundant bandwidth and almost negligible monetary cost than WAN. Our proposed FL can accelerate the learning process and reduce the monetary cost with frequent local aggregation in the same LAN and infrequent global aggregation on a cloud across WAN. We further design a concrete FL platform, namely LanFL, that incorporates several key techniques to handle those challenges introduced by LAN: cloud-device aggregation architecture, intra-LAN peer-to-peer (p2p) topology generation, inter-LAN bandwidth capacity heterogeneity. We evaluate LanFL on 2 typical Non-IID datasets, which reveals that LanFL can significantly accelerate FL training (1.5x-6.0x), save WAN traffic (18.3x-75.6x), and reduce monetary cost (3.8x-27.2x) while preserving the model accuracy.



قيم البحث

اقرأ أيضاً

Federated learning is an effective approach to realize collaborative learning among edge devices without exchanging raw data. In practice, these devices may connect to local hubs instead of connecting to the global server (aggregator) directly. Due t o the (possibly limited) computation capability of these local hubs, it is reasonable to assume that they can perform simple averaging operations. A natural question is whether such local averaging is beneficial under different system parameters and how much gain can be obtained compared to the case without such averaging. In this paper, we study hierarchical federated learning with stochastic gradient descent (HF-SGD) and conduct a thorough theoretical analysis to analyze its convergence behavior. In particular, we first consider the two-level HF-SGD (one level of local averaging) and then extend this result to arbitrary number of levels (multiple levels of local averaging). The analysis demonstrates the impact of local averaging precisely as a function of system parameters. Due to the higher communication cost of global averaging, a strategy of decreasing the global averaging frequency and increasing the local averaging frequency is proposed. Experiments validate the proposed theoretical analysis and the advantages of HF-SGD.
Federated learning (FL) is a distributed learning methodology that allows multiple nodes to cooperatively train a deep learning model, without the need to share their local data. It is a promising solution for telemonitoring systems that demand inten sive data collection, for detection, classification, and prediction of future events, from different locations while maintaining a strict privacy constraint. Due to privacy concerns and critical communication bottlenecks, it can become impractical to send the FL updated models to a centralized server. Thus, this paper studies the potential of hierarchical FL in IoT heterogeneous systems and propose an optimized solution for user assignment and resource allocation on multiple edge nodes. In particular, this work focuses on a generic class of machine learning models that are trained using gradient-descent-based schemes while considering the practical constraints of non-uniformly distributed data across different users. We evaluate the proposed system using two real-world datasets, and we show that it outperforms state-of-the-art FL solutions. In particular, our numerical results highlight the effectiveness of our approach and its ability to provide 4-6% increase in the classification accuracy, with respect to hierarchical FL schemes that consider distance-based user assignment. Furthermore, the proposed approach could significantly accelerate FL training and reduce communication overhead by providing 75-85% reduction in the communication rounds between edge nodes and the centralized server, for the same model accuracy.
A central question in federated learning (FL) is how to design optimization algorithms that minimize the communication cost of training a model over heterogeneous data distributed across many clients. A popular technique for reducing communication is the use of local steps, where clients take multiple optimization steps over local data before communicating with the server (e.g., FedAvg, SCAFFOLD). This contrasts with centralized methods, where clients take one optimization step per communication round (e.g., Minibatch SGD). A recent lower bound on the communication complexity of first-order methods shows that centralized methods are optimal over highly-heterogeneous data, whereas local methods are optimal over purely homogeneous data [Woodworth et al., 2020]. For intermediate heterogeneity levels, no algorithm is known to match the lower bound. In this paper, we propose a multistage optimization scheme that nearly matches the lower bound across all heterogeneity levels. The idea is to first run a local method up to a heterogeneity-induced error floor; next, we switch to a centralized method for the remaining steps. Our analysis may help explain empirically-successful stepsize decay methods in FL [Charles et al., 2020; Reddi et al., 2020]. We demonstrate the schemes practical utility in image classification tasks.
Distributed learning algorithms aim to leverage distributed and diverse data stored at users devices to learn a global phenomena by performing training amongst participating devices and periodically aggregating their local models parameters into a gl obal model. Federated learning is a promising paradigm that allows for extending local training among the participant devices before aggregating the parameters, offering better communication efficiency. However, in the cases where the participants data are strongly skewed (i.e., non-IID), the local models can overfit local data, leading to low performing global model. In this paper, we first show that a major cause of the performance drop is the weighted distance between the distribution over classes on users devices and the global distribution. Then, to face this challenge, we leverage the edge computing paradigm to design a hierarchical learning system that performs Federated Gradient Descent on the user-edge layer and Federated Averaging on the edge-cloud layer. In this hierarchical architecture, we formalize and optimize this user-edge assignment problem such that edge-level data distributions turn to be similar (i.e., close to IID), which enhances the Federated Averaging performance. Our experiments on multiple real-world datasets show that the proposed optimized assignment is tractable and leads to faster convergence of models towards a better accuracy value.
Personalization methods in federated learning aim to balance the benefits of federated and local training for data availability, communication cost, and robustness to client heterogeneity. Approaches that require clients to communicate all model para meters can be undesirable due to privacy and communication constraints. Other approaches require always-available or stateful clients, impractical in large-scale cross-device settings. We introduce Federated Reconstruction, the first model-agnostic framework for partially local federated learning suitable for training and inference at scale. We motivate the framework via a connection to model-agnostic meta learning, empirically demonstrate its performance over existing approaches for collaborative filtering and next word prediction, and release an open-source library for evaluating approaches in this setting. We also describe the successful deployment of this approach at scale for federated collaborative filtering in a mobile keyboard application.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا