ﻻ يوجد ملخص باللغة العربية
Problems of the following kind have been the focus of much recent research in the realm of parameterized complexity: Given an input graph (digraph) on $n$ vertices and a positive integer parameter $k$, find if there exist $k$ edges (arcs) whose deletion results in a graph that satisfies some specified parity constraints. In particular, when the objective is to obtain a connected graph in which all the vertices have even degrees---where the resulting graph is emph{Eulerian}---the problem is called Undirected Eulerian Edge Deletion. The corresponding problem in digraphs where the resulting graph should be strongly connected and every vertex should have the same in-degree as its out-degree is called Directed Eulerian Edge Deletion. Cygan et al. [emph{Algorithmica, 2014}] showed that these problems are fixed parameter tractable (FPT), and gave algorithms with the running time $2^{O(k log k)}n^{O(1)}$. They also asked, as an open problem, whether there exist FPT algorithms which solve these problems in time $2^{O(k)}n^{O(1)}$. In this paper we answer their question in the affirmative: using the technique of computing emph{representative families of co-graphic matroids} we design algorithms which solve these problems in time $2^{O(k)}n^{O(1)}$. The crucial insight we bring to these problems is to view the solution as an independent set of a co-graphic matroid. We believe that this view-point/approach will be useful in other problems where one of the constraints that need to be satisfied is that of connectivity.
One of the most fundamental problems in computer science is the reachability problem: Given a directed graph and two vertices s and t, can s reach t via a path? We revisit existing techniques and combine them with new approaches to support a large po
In the Survivable Network Design Problem (SNDP), the input is an edge-weighted (di)graph $G$ and an integer $r_{uv}$ for every pair of vertices $u,vin V(G)$. The objective is to construct a subgraph $H$ of minimum weight which contains $r_{uv}$ edge-
We prove new complexity results for Feedback Vertex Set and Even Cycle Transversal on $H$-free graphs, that is, graphs that do not contain some fixed graph $H$ as an induced subgraph. In particular, we prove that both problems are polynomial-time sol
Finding the largest clique is a notoriously hard problem, even on random graphs. It is known that the clique number of a random graph G(n,1/2) is almost surely either k or k+1, where k = 2log n - 2log(log n) - 1. However, a simple greedy algorithm fi
Structure properties of fifty five even-even actinides have been calculated using the Gogny D1S force and the Hartree-Fock-Bogoliubov approach as well as the configuration mixing method. Theoretical results are compared with experimental data.