ترغب بنشر مسار تعليمي؟ اضغط هنا

Current Algorithms for Detecting Subgraphs of Bounded Treewidth are Probably Optimal

67   0   0.0 ( 0 )
 نشر من قبل Karl Bringmann
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The Subgraph Isomorphism problem is of considerable importance in computer science. We examine the problem when the pattern graph H is of bounded treewidth, as occurs in a variety of applications. This problem has a well-known algorithm via color-coding that runs in time $O(n^{tw(H)+1})$ [Alon, Yuster, Zwick95], where $n$ is the number of vertices of the host graph $G$. While there are pattern graphs known for which Subgraph Isomorphism can be solved in an improved running time of $O(n^{tw(H)+1-varepsilon})$ or even faster (e.g. for $k$-cliques), it is not known whether such improvements are possible for all patterns. The only known lower bound rules out time $n^{o(tw(H) / log(tw(H)))}$ for any class of patterns of unbounded treewidth assuming the Exponential Time Hypothesis [Marx07]. In this paper, we demonstrate the existence of maximally hard pattern graphs $H$ that require time $n^{tw(H)+1-o(1)}$. Specifically, under the Strong Exponential Time Hypothesis (SETH), a standard assumption from fine-grained complexity theory, we prove the following asymptotic statement for large treewidth $t$: For any $varepsilon > 0$ there exists $t ge 3$ and a pattern graph $H$ of treewidth $t$ such that Subgraph Isomorphism on pattern $H$ has no algorithm running in time $O(n^{t+1-varepsilon})$. Under the more recent 3-uniform Hyperclique hypothesis, we even obtain tight lower bounds for each specific treewidth $t ge 3$: For any $t ge 3$ there exists a pattern graph $H$ of treewidth $t$ such that for any $varepsilon>0$ Subgraph Isomorphism on pattern $H$ has no algorithm running in time $O(n^{t+1-varepsilon})$. In addition to these main results, we explore (1) colored and uncolored problem variants (and why they are equivalent for most cases), (2) Subgraph Isomorphism for $tw < 3$, (3) Subgraph Isomorphism parameterized by pathwidth, and (4) a weighted problem variant.

قيم البحث

اقرأ أيضاً

The maximum/minimum bisection problems are, given an edge-weighted graph, to find a bipartition of the vertex set into two sets whose sizes differ by at most one, such that the total weight of edges between the two sets is maximized/minimized. Althou gh these two problems are known to be NP-hard, there is an efficient algorithm for bounded-treewidth graphs. In particular, Jansen et al. (SIAM J. Comput. 2005) gave an $O(2^tn^3)$-time algorithm when given a tree decomposition of width $t$ of the input graph, where $n$ is the number of vertices of the input graph. Eiben et al. (ESA 2019) improved the dependency of $n$ in the running time by giving an $O(8^tt^5n^2log n)$-time algorithm. Moreover, they showed that there is no $O(n^{2-varepsilon})$-time algorithm for trees under some reasonable complexity assumption. In this paper, we show an $O(2^t(tn)^2)$-time algorithm for both problems, which is asymptotically tight to their conditional lower bound. We also show that the exponential dependency of the treewidth is asymptotically optimal under the Strong Exponential Time Hypothesis. Finally, we discuss the (in)tractability of both problems with respect to special graph classes.
Understanding spatial correlation is vital in many fields including epidemiology and social science. Lee, Meeks and Pettersson (Stat. Comput. 2021) recently demonstrated that improved inference for areal unit count data can be achieved by carrying ou t modifications to a graph representing spatial correlations; specifically, they delete edges of the planar graph derived from border-sharing between geographic regions in order to maximise a specific objective function. In this paper we address the computational complexity of the associated graph optimisation problem. We demonstrate that this problem cannot be solved in polynomial time unless P = NP; we further show intractability for two simpler variants of the problem. We follow these results with two parameterised algorithms that exactly solve the problem in polynomial time in restricted settings. The first of these utilises dynamic programming on a tree decomposition, and runs in polynomial time if both the treewidth and maximum degree are bounded. The second algorithm is restricted to problem instances with maximum degree three, as may arise from triangulations of planar surfaces, but is an FPT algorithm when the maximum number of edges that can be removed is taken as the parameter.
The Cut & Count technique and the rank-based approach have lead to single-exponential FPT algorithms parameterized by treewidth, that is, running in time $2^{O(tw)}n^{O(1)}$, for Feedback Vertex Set and connect
We initiate the study of coresets for clustering in graph metrics, i.e., the shortest-path metric of edge-weighted graphs. Such clustering problems are essential to data analysis and used for example in road networks and data visualization. A coreset is a compact summary of the data that approximately preserves the clustering objective for every possible center set, and it offers significant efficiency improvements in terms of running time, storage, and communication, including in streaming and distributed settings. Our main result is a near-linear time construction of a coreset for k-Median in a general graph $G$, with size $O_{epsilon, k}(mathrm{tw}(G))$ where $mathrm{tw}(G)$ is the treewidth of $G$, and we complement the construction with a nearly-tight size lower bound. The construction is based on the framework of Feldman and Langberg [STOC 2011], and our main technical contribution, as required by this framework, is a uniform bound of $O(mathrm{tw}(G))$ on the shattering dimension under any point weights. We validate our coreset on real-world road networks, and our scalable algorithm constructs tiny coresets with high accuracy, which translates to a massive speedup of existing approximation algorithms such as local search for graph k-Median.
The notion of directed treewidth was introduced by Johnson, Robertson, Seymour and Thomas [Journal of Combinatorial Theory, Series B, Vol 82, 2001] as a first step towards an algorithmic metatheory for digraphs. They showed that some NP-complete prop erties such as Hamiltonicity can be decided in polynomial time on digraphs of constant directed treewidth. Nevertheless, despite more than one decade of intensive research, the list of hard combinatorial problems that are known to be solvable in polynomial time when restricted to digraphs of constant directed treewidth has remained scarce. In this work we enrich this list by providing for the first time an algorithmic metatheorem connecting the monadic second order logic of graphs to directed treewidth. We show that most of the known positive algorithmic results for digraphs of constant directed treewidth can be reformulated in terms of our metatheorem. Additionally, we show how to use our metatheorem to provide polynomial time algorithms for two classes of combinatorial problems that have not yet been studied in the context of directed width measures. More precisely, for each fixed $k,w in mathbb{N}$, we show how to count in polynomial time on digraphs of directed treewidth $w$, the number of minimum spanning strong subgraphs that are the union of $k$ directed paths, and the number of maximal subgraphs that are the union of $k$ directed paths and satisfy a given minor closed property. To prove our metatheorem we devise two technical tools which we believe to be of independent interest. First, we introduce the notion of tree-zig-zag number of a digraph, a new directed width measure that is at most a constant times directed treewidth. Second, we introduce the notion of $z$-saturated tree slice language, a new formalism for the specification and manipulation of infinite sets of digraphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا