ﻻ يوجد ملخص باللغة العربية
A posteriori error estimates are constructed for the three-field variational formulation of the Biot problem involving the displacements, the total pressure and the fluid pressure. The discretization under focus is the H1({Omega})-conforming Taylor-Hood finite element combination, consisting of polynomial degrees k + 1 for the displacements and the fluid pressure and k for the total pressure. An a posteriori error estimator is derived on the basis of H(div)-conforming reconstructions of the stress and flux approximations. The symmetry of the reconstructed stress is allowed to be satisfied only weakly. The reconstructions can be performed locally on a set of vertex patches and lead to a guaranteed upper bound for the error with a constant that depends only on local constants associated with the patches and thus on the shape regularity of the triangulation. Particular emphasis is given to nearly incompressible materials and the error estimates hold uniformly in the incompressible limit. Numerical results on the L-shaped domain confirm the theory and the suitable use of the error estimator in adaptive strategies.
A stress equilibration procedure for linear elasticity is proposed and analyzed in this paper with emphasis on the behavior for (nearly) incompressible materials. Based on the displacement-pressure approximation computed with a stable finite element
The Richards equation is commonly used to model the flow of water and air through soil, and it serves as a gateway equation for multiphase flows through porous media. It is a nonlinear advection-reaction-diffusion equation that exhibits both paraboli
Hybrid quantum/molecular mechanics models (QM/MM methods) are widely used in material and molecular simulations when MM models do not provide sufficient accuracy but pure QM models are computationally prohibitive. Adaptive QM/MM coupling methods feat
In two dimensions, we propose and analyze an a posteriori error estimator for finite element approximations of the stationary Navier Stokes equations with singular sources on Lipschitz, but not necessarily convex, polygonal domains. Under a smallness
We present a residual-based a posteriori error estimator for the hybrid high-order (HHO) method for the Stokes model problem. Both the proposed HHO method and error estimator are valid in two and three dimensions and support arbitrary approximation o