ﻻ يوجد ملخص باللغة العربية
Hybrid quantum/molecular mechanics models (QM/MM methods) are widely used in material and molecular simulations when MM models do not provide sufficient accuracy but pure QM models are computationally prohibitive. Adaptive QM/MM coupling methods feature on-the-fly classification of atoms during the simulation, allowing the QM and MM subsystems to be updated as needed. In this work, we propose such an adaptive QM/MM method for material defect simulations based on a new residual based it a posteriori error estimator, which provides both lower and upper bounds for the true error. We validate the analysis and illustrate the effectiveness of the new scheme on numerical simulations for material defects.
QM (quantum mechenics) and MM (molecular mechenics) coupling methods are widely used in simulations of crystalline defects. In this paper, we construct a residual based a posteriori error indicator for QM/MM coupling approximations. We prove the reli
The Richards equation is commonly used to model the flow of water and air through soil, and it serves as a gateway equation for multiphase flows through porous media. It is a nonlinear advection-reaction-diffusion equation that exhibits both paraboli
We develop and analyze a framework for consistent QM/MM (quantum/classic) hybrid models of crystalline defects, which admits general atomistic interactions including traditional off-the-shell interatomic potentials as well as state of art machine-lea
In two dimensions, we propose and analyze an a posteriori error estimator for finite element approximations of the stationary Navier Stokes equations with singular sources on Lipschitz, but not necessarily convex, polygonal domains. Under a smallness
A posteriori error estimates are constructed for the three-field variational formulation of the Biot problem involving the displacements, the total pressure and the fluid pressure. The discretization under focus is the H1({Omega})-conforming Taylor-H