ترغب بنشر مسار تعليمي؟ اضغط هنا

Weakly symmetric stress equilibration and a posteriori error estimation for linear elasticity

67   0   0.0 ( 0 )
 نشر من قبل Fleurianne Bertrand
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A stress equilibration procedure for linear elasticity is proposed and analyzed in this paper with emphasis on the behavior for (nearly) incompressible materials. Based on the displacement-pressure approximation computed with a stable finite element pair, it constructs an $H (text{div})$-conforming, weakly symmetric stress reconstruction. Our focus is on the Taylor-Hood combination of continuous finite element spaces of polynomial degrees $k+1$ and $k$ for the displacement and the pressure, respectively. Our construction leads then to reconstructed stresses by Raviart-Thomas elements of degree $k$ which are weakly symmetric in the sense that its anti-symmetric part is zero tested against continuous piecewise polynomial functions of degree $k$. The computation is performed locally on a set of vertex patches covering the computational domain in the spirit of equilibration cite{BraSch:08}. Due to the weak symmetry constraint, the local problems need to satisfy consistency conditions associated with all rigid body modes, in contrast to the case of Poissons equation where only the constant modes are involved. The resulting error estimator is shown to constitute a guaranteed upper bound for the error with a constant that depends only on the shape regularity of the triangulation. Local efficiency, uniformly in the incompressible limit, is deduced from the upper bound by the residual error estimator.

قيم البحث

اقرأ أيضاً

127 - F. Bertrand , G. Starke 2020
A posteriori error estimates are constructed for the three-field variational formulation of the Biot problem involving the displacements, the total pressure and the fluid pressure. The discretization under focus is the H1({Omega})-conforming Taylor-H ood finite element combination, consisting of polynomial degrees k + 1 for the displacements and the fluid pressure and k for the total pressure. An a posteriori error estimator is derived on the basis of H(div)-conforming reconstructions of the stress and flux approximations. The symmetry of the reconstructed stress is allowed to be satisfied only weakly. The reconstructions can be performed locally on a set of vertex patches and lead to a guaranteed upper bound for the error with a constant that depends only on local constants associated with the patches and thus on the shape regularity of the triangulation. Particular emphasis is given to nearly incompressible materials and the error estimates hold uniformly in the incompressible limit. Numerical results on the L-shaped domain confirm the theory and the suitable use of the error estimator in adaptive strategies.
95 - Qingguo Hong , Jun Hu , Limin Ma 2020
This paper presents an extended Galerkin analysis for various Galerkin methods of the linear elasticity problem. The analysis is based on a unified Galerkin discretization formulation for the linear elasticity problem consisting of four discretizatio n variables: strong symmetric stress tensor $boldsymbol sigma_h$, displacement $u_h$ inside each element and the modifications of these two variables $check boldsymbol sigma_h$ and $check u_h$ on elementary boundaries. Motivated by many relevant methods in literature, this formulation can be used to derive most existing discontinuous, nonconforming and conforming Galerkin methods for linear elasticity problem and especially to develop a number of new discontinuous Galerkin methods. Many special cases of this four-field formulation are proved to be hybridizable and can be reduced to some known hybridizable discontinuous Galerkin, weak Galerkin and local discontinuous Galerkin methods by eliminating one or two of the four fields. As certain stabilization parameter tends to infinity, this four-field formulation is proved to converge to some conforming and nonconforming mixed methods for linear elasticity problem. Two families of inf-sup conditions, one known as $H^1$-philic and another known as H(div)-phillic, are proved to be uniformly valid with respect to different choices of discrete spaces and parameters. These inf-sup conditions guarantee the well-posedness of the new proposed formulations and also offer a new and unified analysis for many existing methods in literature as a by-product.
The focus of this work is a posteriori error estimation for stochastic Galerkin approximations of parameter-dependent linear elasticity equations. The starting point is a three-field PDE model in which the Youngs modulus is an affine function of a co untable set of parameters. We analyse the weak formulation, its stability with respect to a weighted norm and discuss approximation using stochastic Galerkin mixed finite element methods (SG-MFEMs). We introduce a novel a posteriori error estimation scheme and establish upper and lower bounds for the SG-MFEM error. The constants in the bounds are independent of the Poisson ratio as well as the SG-MFEM discretisation parameters. In addition, we discuss proxies for the error reduction associated with certain enrichments of the SG-MFEM spaces and we use these to develop an adaptive algorithm that terminates when the estimated error falls below a user-prescribed tolerance. We prove that both the a posteriori error estimate and the error reduction proxies are reliable and efficient in the incompressible limit case. Numerical results are presented to validate the theory. All experiments were performed using open source (IFISS) software that is available online.
The spectral deferred correction method is a variant of the deferred correction method for solving ordinary differential equations. A benefit of this method is that is uses low order schemes iteratively to produce a high order approximation. In this paper we consider adjoint-based a posteriori analysis to estimate the error in a quantity of interest of the solution. This error formula is derived by first developing a nodally equivalent finite element method to the spectral deferred correction method. The error formula is then split into various terms, each of which characterizes a different component of the error. These components may be used to determine the optimal strategy for changing the method parameters to best improve the error.
The paper considers a class of parametric elliptic partial differential equations (PDEs), where the coefficients and the right-hand side function depend on infinitely many (uncertain) parameters. We introduce a two-level a posteriori estimator to con trol the energy error in multilevel stochastic Galerkin approximations for this class of PDE problems. We prove that the two-level estimator always provides a lower bound for the unknown approximation error, while the upper bound is equivalent to a saturation assumption. We propose and empirically compare three adaptive algorithms, where the structure of the estimator is exploited to perform spatial refinement as well as parametric enrichment. The paper also discusses implementation aspects of computing multilevel stochastic Galerkin approximations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا