ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal S-matrix correlations for complex scattering of many-body wavepackets: theory, simulation and experiment

167   0   0.0 ( 0 )
 نشر من قبل Andreas Bereczuk
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an in-depth study of the universal correlations of scattering-matrix entries required in the framework of non-stationary many-body scattering where the incoming states are localized wavepackets. Contrary to the stationary case the emergence of universal signatures of chaotic dynamics in dynamical observables manifests itself in the emergence of universal correlations of the scattering matrix at different energies. We use a semiclassical theory based on interfering paths, numerical wave function based simulations and numerical averaging over random-matrix ensembles to calculate such correlations and compare with experimental measurements in microwave graphs, finding excellent agreement. Our calculations show that the universality of the correlators survives the extreme limit of few open channels relevant for electron quantum optics, albeit at the price of dealing with large-cancellation effects requiring the computation of a large class of semiclassical diagrams.



قيم البحث

اقرأ أيضاً

175 - Rupert Small 2014
We present a new method which uses Feynman-like diagrams to calculate the statistical quantities of embedded many-body random matrix problems. The method provides a promising alternative to existing techniques and offers many important simplification s. We use it here to find the fourth, sixth and eighth moments of the level density for k fermions or bosons interacting through a random hermitian potential in the limit where the number of possible single-particle states is taken to infinity. All share the same transition, starting immediately after 2k = m, from moments arising from a semi-circular level density to gaussian moments. The results also reveal a striking feature; the domain of the 2nth moment is naturally divided into n subdomains specified by the points 2k = m, 3k = m, ..., nk = m.
Non-locality is a fundamental trait of quantum many-body systems, both at the level of pure states, as well as at the level of mixed states. Due to non-locality, mixed states of any two subsystems are correlated in a stronger way than what can be acc ounted for by considering correlated probabilities of occupying some microstates. In the case of equilibrium mixed states, we explicitly build two-point quantum correlation functions, which capture the specific, superior correlations of quantum systems at finite temperature, and which are directly { accessible to experiments when correlating measurable properties}. When non-vanishing, these correlation functions rule out a precise form of separability of the equilibrium state. In particular, we show numerically that quantum correlation functions generically exhibit a finite emph{quantum coherence length}, dictating the characteristic distance over which degrees of freedom cannot be considered as separable. This coherence length is completely disconnected from the correlation length of the system -- as it remains finite even when the correlation length of the system diverges at finite temperature -- and it unveils the unique spatial structure of quantum correlations.
We study the statistical properties of the complex generalization of Wigner time delay $tau_text{W}$ for sub-unitary wave chaotic scattering systems. We first demonstrate theoretically that the mean value of the $text{Re}[tau_text{W}]$ distribution f unction for a system with uniform absorption strength $eta$ is equal to the fraction of scattering matrix poles with imaginary parts exceeding $eta$. The theory is tested experimentally with an ensemble of microwave graphs with either one or two scattering channels, and showing broken time-reversal invariance and variable uniform attenuation. The experimental results are in excellent agreement with the developed theory. The tails of the distributions of both real and imaginary time delay are measured and are also found to agree with theory. The results are applicable to any practical realization of a wave chaotic scattering system in the short-wavelength limit.
We provide a simple and predictive random-matrix framework that naturally generalizes Pages law for ergodic many-body systems by incorporating a finite entanglement localization length. By comparing a highly structured one-dimensional model to a comp letely unstructured model and a physical system, we uncover a remarkable degree of universality, suggesting that the effective localization length is a universal combination of model parameters up until it drops down to the microscopic scale.
We compare accuracy of two prime time evolution algorithms involving Matrix Product States - tDMRG (time-dependent density matrix renormalization group) and TDVP (time-dependent variational principle). The latter is supposed to be superior within a l imited and fixed auxiliary space dimension. Surprisingly, we find that the performance of algorithms depends on the model considered. In particular, many-body localized systems as well as the crossover regions between localized and delocalized phases are better described by tDMRG, contrary to the delocalized regime where TDVP indeed outperforms tDMRG in terms of accuracy and reliability. As an example, we study many-body localization transition in a large size Heisenberg chain. We discuss drawbacks of previous estimates [Phys. Rev. B 98, 174202 (2018)] of the critical disorder strength for large systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا