ترغب بنشر مسار تعليمي؟ اضغط هنا

Random-matrix perspective on many-body entanglement with a finite localization length

86   0   0.0 ( 0 )
 نشر من قبل Marcin Szyniszewski
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a simple and predictive random-matrix framework that naturally generalizes Pages law for ergodic many-body systems by incorporating a finite entanglement localization length. By comparing a highly structured one-dimensional model to a completely unstructured model and a physical system, we uncover a remarkable degree of universality, suggesting that the effective localization length is a universal combination of model parameters up until it drops down to the microscopic scale.

قيم البحث

اقرأ أيضاً

We compare accuracy of two prime time evolution algorithms involving Matrix Product States - tDMRG (time-dependent density matrix renormalization group) and TDVP (time-dependent variational principle). The latter is supposed to be superior within a l imited and fixed auxiliary space dimension. Surprisingly, we find that the performance of algorithms depends on the model considered. In particular, many-body localized systems as well as the crossover regions between localized and delocalized phases are better described by tDMRG, contrary to the delocalized regime where TDVP indeed outperforms tDMRG in terms of accuracy and reliability. As an example, we study many-body localization transition in a large size Heisenberg chain. We discuss drawbacks of previous estimates [Phys. Rev. B 98, 174202 (2018)] of the critical disorder strength for large systems.
We examine the many-body localization (MBL) phase transition in one-dimensional quantum systems with quenched randomness and short-range interactions. Following recent works, we use a strong-randomness renormalization group (RG) approach where the ph ase transition is due to the so-called avalanche instability of the MBL phase. We show that the critical behavior can be determined analytically within this RG. On a rough $textit{qualitative}$ level the RG flow near the critical fixed point is similar to the Kosterlitz-Thouless (KT) flow as previously shown, but there are important differences in the critical behavior. Thus we show that this MBL transition is in a new universality class that is different from KT. The divergence of the correlation length corresponds to critical exponent $ u rightarrow infty$, but the divergence is weaker than for the KT transition.
We investigate spectral statistics in spatially extended, chaotic many-body quantum systems with a conserved charge. We compute the spectral form factor $K(t)$ analytically for a minimal Floquet circuit model that has a $U(1)$ symmetry encoded via au xiliary spin-$1/2$ degrees of freedom. Averaging over an ensemble of realizations, we relate $K(t)$ to a partition function for the spins, given by a Trotterization of the spin-$1/2$ Heisenberg ferromagnet. Using Bethe Ansatz techniques, we extract the Thouless time $t^{vphantom{*}}_{rm Th}$ demarcating the extent of random matrix behavior, and find scaling behavior governed by diffusion for $K(t)$ at $tlesssim t^{vphantom{*}}_{rm Th}$. We also report numerical results for $K(t)$ in a generic Floquet spin model, which are consistent with these analytic predictions.
We present a framework in which the transition between a many-body localised (MBL) phase and an ergodic one is symmetry breaking. We consider random Floquet spin chains, expressing their averaged spectral form factor (SFF) as a function of time in te rms of a transfer matrix that acts in the space direction. The SFF is determined by the leading eigenvalues of this transfer matrix. In the MBL phase the leading eigenvalue is unique, as in a symmetry-unbroken phase, while in the ergodic phase and at late times the leading eigenvalues are asymptotically degenerate, as in a system with degenerate symmetry-breaking phases. We identify the broken symmetry of the transfer matrix, introduce a local order parameter for the transition, and show that the associated correlation functions are long-ranged only in the ergodic phase.
We show that the one-particle density matrix $rho$ can be used to characterize the interaction-driven many-body localization transition in closed fermionic systems. The natural orbitals (the eigenstates of $rho$) are localized in the many-body locali zed phase and spread out when one enters the delocalized phase, while the occupation spectrum (the set of eigenvalues of $rho$) reveals the distinctive Fock-space structure of the many-body eigenstates, exhibiting a step-like discontinuity in the localized phase. The associated one-particle occupation entropy is small in the localized phase and large in the delocalized phase, with diverging fluctuations at the transition. We analyze the inverse participation ratio of the natural orbitals and find that it is independent of system size in the localized phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا