ترغب بنشر مسار تعليمي؟ اضغط هنا

Particle diagrams and embedded many-body random matrix theory

169   0   0.0 ( 0 )
 نشر من قبل Rupert Small
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Rupert Small




اسأل ChatGPT حول البحث

We present a new method which uses Feynman-like diagrams to calculate the statistical quantities of embedded many-body random matrix problems. The method provides a promising alternative to existing techniques and offers many important simplifications. We use it here to find the fourth, sixth and eighth moments of the level density for k fermions or bosons interacting through a random hermitian potential in the limit where the number of possible single-particle states is taken to infinity. All share the same transition, starting immediately after 2k = m, from moments arising from a semi-circular level density to gaussian moments. The results also reveal a striking feature; the domain of the 2nth moment is naturally divided into n subdomains specified by the points 2k = m, 3k = m, ..., nk = m.



قيم البحث

اقرأ أيضاً

184 - Rupert Small 2014
We present a method using Feynman-like diagrams to calculate the statistical properties of random many-body potentials. This method provides a promising alternative to existing techniques typically applied to this class of problems, such as the metho d of supersymmetry and the eigenvector expansion technique pioneered in [1]. We use it here to calculate the fourth, sixth and eighth moments of the average level density for systems with $m$ bosons or fermions that interact through a random $k$-body Hermitian potential ($k le m$); the ensemble of such potentials with a Gaussian weight is known as the embedded Gaussian Unitary Ensemble (eGUE) [2]. Our results apply in the limit where the number $l$ of available single-particle states is taken to infinity. A key advantage of the method is that it provides an efficient way to identify only those expressions which will stay relevant in this limit. It also provides a general argument for why these terms have to be the same for bosons and fermions. The moments are obtained as sums over ratios of binomial expressions, with a transition from moments associated to a semi-circular level density for $m < 2k$ to Gaussian moments in the dilute limit $k ll m ll l$. Regarding the form of this transition, we see that as $m$ is increased, more and more diagrams become relevant, with new contributions starting from each of the points $m = 2k, 3k, ldots, nk$ for the $2n$-th moment.
We numerically study the level statistics of the Gaussian $beta$ ensemble. These statistics generalize Wigner-Dyson level statistics from the discrete set of Dyson indices $beta = 1,2,4$ to the continuous range $0 < beta < infty$. The Gaussian $beta$ ensemble covers Poissonian level statistics for $beta to 0$, and provides a smooth interpolation between Poissonian and Wigner-Dyson level statistics. We establish the physical relevance of the level statistics of the Gaussian $beta$ ensemble by showing near-perfect agreement with the level statistics of a paradigmatic model in studies on many-body localization over the entire crossover range from the thermal to the many-body localized phase. In addition, we show similar agreement for a related Hamiltonian with broken time-reversal symmetry.
We provide a simple and predictive random-matrix framework that naturally generalizes Pages law for ergodic many-body systems by incorporating a finite entanglement localization length. By comparing a highly structured one-dimensional model to a comp letely unstructured model and a physical system, we uncover a remarkable degree of universality, suggesting that the effective localization length is a universal combination of model parameters up until it drops down to the microscopic scale.
Linking thermodynamic variables like temperature $T$ and the measure of chaos, the Lyapunov exponents $lambda$, is a question of fundamental importance in many-body systems. By using nonlinear fluid equations in one and three dimensions, we prove tha t in thermalised flows $lambda propto sqrt{T}$, in agreement with results from frustrated spin systems. This reveals an underlying universality and provides evidence for recent conjectures on the thermal scaling of $lambda$. We also reconcile seemingly disparate effects -- equilibration on one hand and pushing systems out-of-equilibrium on the other -- of many-body chaos by relating $lambda$ to $T$ through the dynamical structures of the flow.
We extend random matrix theory to consider randomly interacting spin systems with spatial locality. We develop several methods by which arbitrary correlators may be systematically evaluated in a limit where the local Hilbert space dimension $N$ is la rge. First, the correlators are given by sums over stacked planar diagrams which are completely determined by the spectra of the individual interactions and a dependency graph encoding the locality in the system. We then introduce heap freeness as a generalization of free independence, leading to a second practical method to evaluate the correlators. Finally, we generalize the cumulant expansion to a sum over dependency partitions, providing the third and most succinct of our methods. Our results provide tools to study dynamics and correlations within extended quantum many-body systems which conserve energy. We further apply the formalism to show that quantum satisfiability at large-$N$ is determined by the evaluation of the independence polynomial on a wide class of graphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا