ﻻ يوجد ملخص باللغة العربية
We compare accuracy of two prime time evolution algorithms involving Matrix Product States - tDMRG (time-dependent density matrix renormalization group) and TDVP (time-dependent variational principle). The latter is supposed to be superior within a limited and fixed auxiliary space dimension. Surprisingly, we find that the performance of algorithms depends on the model considered. In particular, many-body localized systems as well as the crossover regions between localized and delocalized phases are better described by tDMRG, contrary to the delocalized regime where TDVP indeed outperforms tDMRG in terms of accuracy and reliability. As an example, we study many-body localization transition in a large size Heisenberg chain. We discuss drawbacks of previous estimates [Phys. Rev. B 98, 174202 (2018)] of the critical disorder strength for large systems.
Recent developments in matrix-product-state (MPS) investigations of many-body localization (MBL) are reviewed, with a discussion of benefits and limitations of the method. This approach allows one to explore the physics around the MBL transition in s
We provide a simple and predictive random-matrix framework that naturally generalizes Pages law for ergodic many-body systems by incorporating a finite entanglement localization length. By comparing a highly structured one-dimensional model to a comp
Using a new approximate strong-randomness renormalization group (RG), we study the many-body localized (MBL) phase and phase transition in one-dimensional quantum systems with short-range interactions and quenched disorder. Our RG is built on those o
We examine the many-body localization (MBL) phase transition in one-dimensional quantum systems with quenched randomness and short-range interactions. Following recent works, we use a strong-randomness renormalization group (RG) approach where the ph
We study a quantum interacting spin system subject to an external drive and coupled to a thermal bath of spatially localized vibrational modes, serving as a model of Dynamic Nuclear Polarization. We show that even when the many-body eigenstates of th