ترغب بنشر مسار تعليمي؟ اضغط هنا

Heterogeneous Graph Collaborative Filtering using Textual Information

134   0   0.0 ( 0 )
 نشر من قبل Chaoyang Wang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Due to the development of graph neural network models, like graph convolutional network (GCN), graph-based representation learning methods have made great progress in recommender systems. However, the data sparsity is still a challenging problem that graph-based methods are confronted with. Recent works try to solve this problem by utilizing the side information. In this paper, we introduce easily accessible textual information to alleviate the negative effects of data sparsity. Specifically, to incorporate with rich textual knowledge, we utilize a pre-trained context-awareness natural language processing model to initialize the embeddings of text nodes. By a GCN-based node information propagation on the constructed heterogeneous graph, the embeddings of users and items can finally be enriched by the textual knowledge. The matching function used by most graph-based representation learning methods is the inner product, this linear operation can not fit complex semantics well. We design a predictive network, which can combine the graph-based representation learning with the matching function learning, and demonstrate that this predictive architecture can gain significant improvements. Extensive experiments are conducted on three public datasets and the results verify the superior performance of our method over several baselines.

قيم البحث

اقرأ أيضاً

Recently, recommender systems play a pivotal role in alleviating the problem of information overload. Latent factor models have been widely used for recommendation. Most existing latent factor models mainly utilize the interaction information between users and items, although some recently extended models utilize some auxiliary information to learn a unified latent factor for users and items. The unified latent factor only represents the characteristics of users and the properties of items from the aspect of purchase history. However, the characteristics of users and the properties of items may stem from different aspects, e.g., the brand-aspect and category-aspect of items. Moreover, the latent factor models usually use the shallow projection, which cannot capture the characteristics of users and items well. In this paper, we propose a Neural network based Aspect-level Collaborative Filtering model (NeuACF) to exploit different aspect latent factors. Through modelling the rich object properties and relations in recommender system as a heterogeneous information network, NeuACF first extracts different aspect-level similarity matrices of users and items respectively through different meta-paths, and then feeds an elaborately designed deep neural network with these matrices to learn aspect-level latent factors. Finally, the aspect-level latent factors are fused for the top-N recommendation. Moreover, to fuse information from different aspects more effectively, we further propose NeuACF++ to fuse aspect-level latent factors with self-attention mechanism. Extensive experiments on three real world datasets show that NeuACF and NeuACF++ significantly outperform both existing latent factor models and recent neural network models.
User-item interactions in recommendations can be naturally de-noted as a user-item bipartite graph. Given the success of graph neural networks (GNNs) in graph representation learning, GNN-based C methods have been proposed to advance recommender syst ems. These methods often make recommendations based on the learned user and item embeddings. However, we found that they do not perform well wit sparse user-item graphs which are quite common in real-world recommendations. Therefore, in this work, we introduce a novel perspective to build GNN-based CF methods for recommendations which leads to the proposed framework Localized Graph Collaborative Filtering (LGCF). One key advantage of LGCF is that it does not need to learn embeddings for each user and item, which is challenging in sparse scenarios. Alternatively, LGCF aims at encoding useful CF information into a localized graph and making recommendations based on such graph. Extensive experiments on various datasets validate the effectiveness of LGCF especially in sparse scenarios. Furthermore, empirical results demonstrate that LGCF provides complementary information to the embedding-based CF model which can be utilized to boost recommendation performance.
Personalized recommendation is ubiquitous, playing an important role in many online services. Substantial research has been dedicated to learning vector representations of users and items with the goal of predicting a users preference for an item bas ed on the similarity of the representations. Techniques range from classic matrix factorization to more recent deep learning based methods. However, we argue that existing methods do not make full use of the information that is available from user-item interaction data and the similarities between user pairs and item pairs. In this work, we develop a graph convolution-based recommendation framework, named Multi-Graph Convolution Collaborative Filtering (Multi-GCCF), which explicitly incorporates multiple graphs in the embedding learning process. Multi-GCCF not only expressively models the high-order information via a partite user-item interaction graph, but also integrates the proximal information by building and processing user-user and item-item graphs. Furthermore, we consider the intrinsic difference between user nodes and item nodes when performing graph convolution on the bipartite graph. We conduct extensive experiments on four publicly accessible benchmarks, showing significant improvements relative to several state-of-the-art collaborative filtering and graph neural network-based recommendation models. Further experiments quantitatively verify the effectiveness of each component of our proposed model and demonstrate that the learned embeddings capture the important relationship structure.
Personalization lies at the core of boosting the product search system performance. Prior studies mainly resorted to the semantic matching between textual queries and user/product related documents, leaving the user collaborative behaviors untapped. In fact, the collaborative filtering signals between users intuitively offer a complementary information for the semantic matching. To close the gap between collaborative filtering and product search, we propose a Hierarchical Heterogeneous Graph Neural Network (HHGNN) approach in this paper. Specifically, we organize HHGNN with a hierarchical graph structure according to the three edge types. The sequence edge accounts for the syntax formulation from word nodes to sentence nodes; the composition edge aggregates the semantic features to the user and product nodes; and the interaction edge on the top performs graph convolutional operation between user and product nodes. At last, we integrate the higher-order neighboring collaborative features and the semantic features for better representation learning. We conduct extensive experiments on six Amazon review datasets. The results show that our proposed method can outperform the state-of-the-art baselines with a large margin. In addition, we empirically prove that collaborative filtering and semantic matching are complementary to each other in product search performance enhancement.
A growing proportion of human interactions are digitized on social media platforms and subjected to algorithmic decision-making, and it has become increasingly important to ensure fair treatment from these algorithms. In this work, we investigate gen der bias in collaborative-filtering recommender systems trained on social media data. We develop neural fair collaborative filtering (NFCF), a practical framework for mitigating gender bias in recommending sensitive items (e.g. jobs, academic concentrations, or courses of study) using a pre-training and fine-tuning approach to neural collaborative filtering, augmented with bias correction techniques. We show the utility of our methods for gender de-biased career and college major recommendations on the MovieLens dataset and a Facebook dataset, respectively, and achieve better performance and fairer behavior than several state-of-the-art models.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا