ﻻ يوجد ملخص باللغة العربية
Personalization lies at the core of boosting the product search system performance. Prior studies mainly resorted to the semantic matching between textual queries and user/product related documents, leaving the user collaborative behaviors untapped. In fact, the collaborative filtering signals between users intuitively offer a complementary information for the semantic matching. To close the gap between collaborative filtering and product search, we propose a Hierarchical Heterogeneous Graph Neural Network (HHGNN) approach in this paper. Specifically, we organize HHGNN with a hierarchical graph structure according to the three edge types. The sequence edge accounts for the syntax formulation from word nodes to sentence nodes; the composition edge aggregates the semantic features to the user and product nodes; and the interaction edge on the top performs graph convolutional operation between user and product nodes. At last, we integrate the higher-order neighboring collaborative features and the semantic features for better representation learning. We conduct extensive experiments on six Amazon review datasets. The results show that our proposed method can outperform the state-of-the-art baselines with a large margin. In addition, we empirically prove that collaborative filtering and semantic matching are complementary to each other in product search performance enhancement.
Due to the development of graph neural network models, like graph convolutional network (GCN), graph-based representation learning methods have made great progress in recommender systems. However, the data sparsity is still a challenging problem that
This paper proposes CF-NADE, a neural autoregressive architecture for collaborative filtering (CF) tasks, which is inspired by the Restricted Boltzmann Machine (RBM) based CF model and the Neural Autoregressive Distribution Estimator (NADE). We first
User-item interactions in recommendations can be naturally de-noted as a user-item bipartite graph. Given the success of graph neural networks (GNNs) in graph representation learning, GNN-based C methods have been proposed to advance recommender syst
In recent years, graph neural networks (GNNs) have shown powerful ability in collaborative filtering, which is a widely adopted recommendation scenario. While without any side information, existing graph neural network based methods generally learn a
A growing proportion of human interactions are digitized on social media platforms and subjected to algorithmic decision-making, and it has become increasingly important to ensure fair treatment from these algorithms. In this work, we investigate gen