ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Collaborative Filtering with Multi-Aspect Information in Heterogeneous Networks

81   0   0.0 ( 0 )
 نشر من قبل Xiaotian Han
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, recommender systems play a pivotal role in alleviating the problem of information overload. Latent factor models have been widely used for recommendation. Most existing latent factor models mainly utilize the interaction information between users and items, although some recently extended models utilize some auxiliary information to learn a unified latent factor for users and items. The unified latent factor only represents the characteristics of users and the properties of items from the aspect of purchase history. However, the characteristics of users and the properties of items may stem from different aspects, e.g., the brand-aspect and category-aspect of items. Moreover, the latent factor models usually use the shallow projection, which cannot capture the characteristics of users and items well. In this paper, we propose a Neural network based Aspect-level Collaborative Filtering model (NeuACF) to exploit different aspect latent factors. Through modelling the rich object properties and relations in recommender system as a heterogeneous information network, NeuACF first extracts different aspect-level similarity matrices of users and items respectively through different meta-paths, and then feeds an elaborately designed deep neural network with these matrices to learn aspect-level latent factors. Finally, the aspect-level latent factors are fused for the top-N recommendation. Moreover, to fuse information from different aspects more effectively, we further propose NeuACF++ to fuse aspect-level latent factors with self-attention mechanism. Extensive experiments on three real world datasets show that NeuACF and NeuACF++ significantly outperform both existing latent factor models and recent neural network models.

قيم البحث

اقرأ أيضاً

Due to the development of graph neural network models, like graph convolutional network (GCN), graph-based representation learning methods have made great progress in recommender systems. However, the data sparsity is still a challenging problem that graph-based methods are confronted with. Recent works try to solve this problem by utilizing the side information. In this paper, we introduce easily accessible textual information to alleviate the negative effects of data sparsity. Specifically, to incorporate with rich textual knowledge, we utilize a pre-trained context-awareness natural language processing model to initialize the embeddings of text nodes. By a GCN-based node information propagation on the constructed heterogeneous graph, the embeddings of users and items can finally be enriched by the textual knowledge. The matching function used by most graph-based representation learning methods is the inner product, this linear operation can not fit complex semantics well. We design a predictive network, which can combine the graph-based representation learning with the matching function learning, and demonstrate that this predictive architecture can gain significant improvements. Extensive experiments are conducted on three public datasets and the results verify the superior performance of our method over several baselines.
120 - Xiao Luo , Daqing Wu , Chong Chen 2021
With the increasing scale and diversification of interaction behaviors in E-commerce, more and more researchers pay attention to multi-behavior recommender systems that utilize interaction data of other auxiliary behaviors such as view and cart. To a ddress these challenges in heterogeneous scenarios, non-sampling methods have shown superiority over negative sampling methods. However, two observations are usually ignored in existing state-of-the-art non-sampling methods based on binary regression: (1) users have different preference strengths for different items, so they cannot be measured simply by binary implicit data; (2) the dependency across multiple behaviors varies for different users and items. To tackle the above issue, we propose a novel non-sampling learning framework named underline{C}riterion-guided underline{H}eterogeneous underline{C}ollaborative underline{F}iltering (CHCF). CHCF introduces both upper and lower bounds to indicate selection criteria, which will guide user preference learning. Besides, CHCF integrates criterion learning and user preference learning into a unified framework, which can be trained jointly for the interaction prediction on target behavior. We further theoretically demonstrate that the optimization of Collaborative Metric Learning can be approximately achieved by CHCF learning framework in a non-sampling form effectively. Extensive experiments on two real-world datasets show that CHCF outperforms the state-of-the-art methods in heterogeneous scenarios.
Personalized recommendation is ubiquitous, playing an important role in many online services. Substantial research has been dedicated to learning vector representations of users and items with the goal of predicting a users preference for an item bas ed on the similarity of the representations. Techniques range from classic matrix factorization to more recent deep learning based methods. However, we argue that existing methods do not make full use of the information that is available from user-item interaction data and the similarities between user pairs and item pairs. In this work, we develop a graph convolution-based recommendation framework, named Multi-Graph Convolution Collaborative Filtering (Multi-GCCF), which explicitly incorporates multiple graphs in the embedding learning process. Multi-GCCF not only expressively models the high-order information via a partite user-item interaction graph, but also integrates the proximal information by building and processing user-user and item-item graphs. Furthermore, we consider the intrinsic difference between user nodes and item nodes when performing graph convolution on the bipartite graph. We conduct extensive experiments on four publicly accessible benchmarks, showing significant improvements relative to several state-of-the-art collaborative filtering and graph neural network-based recommendation models. Further experiments quantitatively verify the effectiveness of each component of our proposed model and demonstrate that the learned embeddings capture the important relationship structure.
A growing proportion of human interactions are digitized on social media platforms and subjected to algorithmic decision-making, and it has become increasingly important to ensure fair treatment from these algorithms. In this work, we investigate gen der bias in collaborative-filtering recommender systems trained on social media data. We develop neural fair collaborative filtering (NFCF), a practical framework for mitigating gender bias in recommending sensitive items (e.g. jobs, academic concentrations, or courses of study) using a pre-training and fine-tuning approach to neural collaborative filtering, augmented with bias correction techniques. We show the utility of our methods for gender de-biased career and college major recommendations on the MovieLens dataset and a Facebook dataset, respectively, and achieve better performance and fairer behavior than several state-of-the-art models.
In recent years, text-aware collaborative filtering methods have been proposed to address essential challenges in recommendations such as data sparsity, cold start problem, and long-tail distribution. However, many of these text-oriented methods rely heavily on the availability of text information for every user and item, which obviously does not hold in real-world scenarios. Furthermore, specially designed network structures for text processing are highly inefficient for on-line serving and are hard to integrate into current systems. In this paper, we propose a flexible neural recommendation framework, named Review Regularized Recommendation, short as R3. It consists of a neural collaborative filtering part that focuses on prediction output, and a text processing part that serves as a regularizer. This modular design incorporates text information as richer data sources in the training phase while being highly friendly for on-line serving as it needs no on-the-fly text processing in serving time. Our preliminary results show that by using a simple text processing approach, it could achieve better prediction performance than state-of-the-art text-aware methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا