ﻻ يوجد ملخص باللغة العربية
Three-color coherent anti-Stokes Raman scattering represents non-degenerate four wave mixing process that includes both a non-resonant and resonant processes, the contributions of which depend on how the molecular vibrational modes are being excited by the input laser pulses. Non-degenerate four wave mixing processes are complex and understanding these processes requires rigorous data analytical tools, which still lack in this research field. In this work, we introduce one- and two-dimensional intensity-intensity correlation functions in terms of a new variable (e.g., probe pulse delay) and new perturbation parameter (e.g., probe pulse linewidth). In particular, diagonal projections are defined here as a tool to reduce both synchronous and asynchronous two-dimensional correlation spectroscopy analyses down to one-dimensional analysis, revealing valuable analytical information. Detailed analyses using the all Gaussian coherent Raman scattering closed-form solutions and the representative experimental data for resonant and non-resonant processes are presented and compared. This intensity-intensity correlation analytical tool holds a promising potential in resolving and visualizing resonant versus non-resonant four wave mixing processes for quantitative label-free species-specific nonlinear spectroscopy and microscopy.
As optical two-dimensional coherent spectroscopy (2DCS) is extended to a broader range of applications, it is critical to improve the detection sensitivity of optical 2DCS. We developed a fast phase-cycling scheme in a non-collinear optical 2DCS impl
An $it{ab ,, initio}$ based fully microscopic approach is applied to study the nonlinear optical response of bulk Tellurium. The structural and electronic properties are calculated from first principles using the shLDA-1/2 method within density funct
Since its first demonstration in the sixties, coherent anti-Stokes Raman scattering (CARS) has become a powerful spectroscopic sensing tool with broad applications in biology and chemistry. However, it is a complex nonlinear optical process that ofte
We consider Feshbach scattering of fermions in a one-dimensional optical lattice. By formulating the scattering theory in the crystal momentum basis, one can exploit the lattice symmetry and factorize the scattering problem in terms of center-of-mass
High speed optical telecommunication is enabled by wavelength division multiplexing, whereby hundreds of individually stabilized lasers encode the information within a single mode optical fiber. In the seek for larger bandwidth the optical power sent