ﻻ يوجد ملخص باللغة العربية
High speed optical telecommunication is enabled by wavelength division multiplexing, whereby hundreds of individually stabilized lasers encode the information within a single mode optical fiber. In the seek for larger bandwidth the optical power sent into the fiber is limited by optical non-linearities within the fiber and energy consumption of the light sources starts to become a significant cost factor. Optical frequency combs have been suggested to remedy this problem by generating multiple laser lines within a monolithic device, their current stability and coherence lets them operate only in small parameter ranges. Here we show that a broadband frequency comb realized through the electro-optic effect within a high quality whispering gallery mode resonator can operate at low microwave and optical powers. Contrary to the usual third order Kerr non-linear optical frequency combs we rely on the second order non-linear effect which is much more efficient. Our result uses a fixed microwave signal which is mixed with an optical pump signal to generate a coherent frequency comb with a precisely determined carrier separation. The resonant enhancement enables us to operate with microwave powers three order magnitude smaller than in commercially available devices. We can expect the implementation into the next generation long distance telecommunication which relies on coherent emission and detection schemes to allow for operation with higher optical powers and at reduced cost.
Optical frequency combs consist of equally spaced discrete optical frequency components and are essential tools for optical communications and for precision metrology, timing and spectroscopy. To date, wide-spanning combs are most often generated by
Beginning with a continuous wave laser at 1064 nm, we generate a 30 GHz electro-optic frequency comb which contains 100 lines spanning 3 THz. The initial comb is subsequently amplified, spectrally broadened in normal dispersion photonic crystal fiber
Electro-optic modulators from non-linear $chi^{(2)}$ materials are essential for sensing, metrology and telecommunications because they link the optical domain with the microwave domain. At present, most geometries are suited for fiber applications.
Rapid and large scanning of a dissipative Kerr-microresonator soliton comb with the characterization of all comb modes along with the separation of the comb modes is imperative for the emerging applications of the frequency-scanned soliton combs. How
Superconducting cavity electro-optics (EO) presents a promising route to coherently convert microwave and optical photons and distribute quantum entanglement between superconducting circuits over long-distance through an optical network. High EO conv