ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast phase cycling in non-collinear optical two-dimensional coherent spectroscopy

63   0   0.0 ( 0 )
 نشر من قبل Hebin Li
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As optical two-dimensional coherent spectroscopy (2DCS) is extended to a broader range of applications, it is critical to improve the detection sensitivity of optical 2DCS. We developed a fast phase-cycling scheme in a non-collinear optical 2DCS implementation by using liquid crystal phase retarders to modulate the phases of two excitation pulses. The background in the signal can be eliminated by combining either two or four interferograms measured with a proper phase configuration. The effectiveness of this method was validated in optical 2DCS measurements of an atomic vapor. This fast phase-cycling scheme will enable optical 2DCS in novel emerging applications that require enhanced detection sensitivity.



قيم البحث

اقرأ أيضاً

Three-color coherent anti-Stokes Raman scattering represents non-degenerate four wave mixing process that includes both a non-resonant and resonant processes, the contributions of which depend on how the molecular vibrational modes are being excited by the input laser pulses. Non-degenerate four wave mixing processes are complex and understanding these processes requires rigorous data analytical tools, which still lack in this research field. In this work, we introduce one- and two-dimensional intensity-intensity correlation functions in terms of a new variable (e.g., probe pulse delay) and new perturbation parameter (e.g., probe pulse linewidth). In particular, diagonal projections are defined here as a tool to reduce both synchronous and asynchronous two-dimensional correlation spectroscopy analyses down to one-dimensional analysis, revealing valuable analytical information. Detailed analyses using the all Gaussian coherent Raman scattering closed-form solutions and the representative experimental data for resonant and non-resonant processes are presented and compared. This intensity-intensity correlation analytical tool holds a promising potential in resolving and visualizing resonant versus non-resonant four wave mixing processes for quantitative label-free species-specific nonlinear spectroscopy and microscopy.
A combination of spatial interference patterns and spectral interferometry are used to find the global phase for non-collinear two-dimensional Fourier-transform (2DFT) spectra. Results are compared with those using the spectrally resolved transient a bsorption (STRA) method to find the global phase when excitation is with co-linear polarization. Additionally cross-linear polarized 2DFT spectra are correctly phased using the all-optical technique, where the SRTA is not applicable.
178 - Peng Li , Qun Zhang , Xi-Jing Ning 2008
We show theoretically that by applying a bichromatic electromagnetic field, the dressed states of a monochromatically driven two-level atom can be pumped into a coherent superposition termed as dressed-state coherent population trapping. Such effect can be viewed as a new doorknob to manipulate a two-level system via its control over dressed-state populations. Application of this effect in the precision measurement of Rabi frequency, the unexpected population inversion and lasing without inversion are discussed to demonstrate such controllability.
We study electromagnetically induced transparency (EIT) in a heated potassium vapor cell, using a simple optical setup with a single free-running diode laser and an acousto-optic modulator. Despite the fact that the Doppler width is comparable to the ground state hyperfine splitting, transparency windows with deeply sub-natural line widths and large group indices are obtained. A longitudinal magnetic field is used to split the EIT feature and induce magnetooptical anisotropy. Using the beat note between co-propagating coupling and probe beams, we perform a heterodyne measurement of the circular dichroism (and therefore birefringence) of the EIT medium. The observed spectra reveal that lin-par-lin polarizations lead to greater anisotropy than lin-perp-lin. A simplified analytical model encompassing sixteen Zeeman states and eighteen Lamda subsytems reproduces the experimental observations.
We describe the application of Raman Optical-fiber Amplification (ROA) for the phase coherent transfer of optical frequencies in an optical fiber link. ROA uses the transmission fiber itself as a gain medium for bi-directional coherent amplification. In a test setup we evaluated the ROA in terms of on-off gain, signal-to-noise ratio, and phase noise added to the carrier. We transferred a laser frequency in a 200 km optical fiber link with an additional 16 dB fixed attenuator (equivalent to 275 km of fiber on a single span), and evaluated both co-propagating and counter-propagating amplification pump schemes, demonstrating nonlinear effects limiting the co-propagating pump configuration. The frequency at the remote end has a fractional frequency instability of 3e-19 over 1000 s with the optical fiber link noise compensation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا