ترغب بنشر مسار تعليمي؟ اضغط هنا

Laser Assisted Solution Synthesis of High Performance Graphene Supported Electrocatalysts

73   0   0.0 ( 0 )
 نشر من قبل Jianyun Cao
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Simple, yet versatile, methods to functionalize graphene flakes with metal (oxide) nanoparticles are in demand, particularly for the development of advanced catalysts. Herein, based on light-induced electrochemistry, a laser-assisted, continuous, solution route for the simultaneous reduction and modification of graphene oxide with catalytic nanoparticles is reported. Electrochemical graphene oxide (EGO) is used as starting material and electron-hole pair source due to its low degree of oxidation, which imparts structural integrity and an ability to withstand photodegradation. Simply illuminating a solution stream containing EGO and metal salt (e.g., H2PtCl6 or RuCl3) with a 248 nm wavelength laser produces reduced EGO (rEGO, oxygen content 4.0 at%) flakes, decorated with Pt (~2.0 nm) or RuO2 (~2.8 nm) nanoparticles. The RuO2-rEGO flakes exhibit superior catalytic activity for the oxygen evolution reaction, requiring a small overpotential of 225 mV to reach a current density of 10 mA cm-2. The Pt-rEGO flakes (10.2 wt% of Pt) show enhanced mass activity for the hydrogen evolution reaction, and similar performance for oxygen reduction reaction compared to a commercial 20 wt% Pt/C catalyst. This simple production method is also used to deposit PtPd alloy and MnOx nanoparticles on rEGO, demonstrating its versatility in synthesizing functional nanoparticle-modified graphene materials.

قيم البحث

اقرأ أيضاً

We report on a new method for graphene synthesis and assessment of the properties of the resulting large-area graphene layers. Graphene was produced by the high pressure - high temperature growth from the natural graphitic source by utilizing the mol ten Fe-Ni catalysts for dissolution of carbon. The resulting large-area graphene flakes were transferred to the silicon - silicon oxide substrates for the spectroscopic micro-Raman and scanning electron microscopy inspection. The analysis of the G peak, D, T+D and 2D bands in the Raman spectra under the 488-nm laser excitation indicate that the high pressure - high temperature technique is capable of producing the high-quality large-area single-layer graphene with a low defect density. The proposed method may lead to a more reliable graphene synthesis and facilitate its purification and chemical doping.
75 - Si Zhou , Xiaowei Yang , Wei Pei 2018
MXenes with versatile chemistry and superior electrical conductivity are prevalent candidate materials for energy storage and catalysts. Inspired by recent experiments of hybridizing MXenes with carbon materials, here we theoretically design a series of heterostructures of N-doped graphene supported by MXene monolayers as bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). Our first-principles calculations show that the graphitic sheet on V2C and Mo2C MXenes are highly active with an ORR overpotential down to 0.36 V and reaction free energies for the HER approaching zero, both with low kinetic barriers. Such outstanding catalytic activities originate from the electronic coupling between the graphitic sheet and the MXene, and can be correlated with the pz band center of surface carbon atoms and the work function of the heterostructures. Our findings screen a novel form of highly active electrocatalysts by taking advantage of the fast charge transfer kinetics and strong interfacial coupling of MXenes, and illuminate a universal mechanism for modulating the catalytic properties of two-dimensional hybrid materials.
Polymer assisted spherical FeNi nanoparticles were prepared via wet chemical method using hydrazine as a reducing agent and polymers (PVP and PEG) as reducing and stabilizing agent. Structural studies performed using XRD and TEM shows uniform dispers ion of fine FeNi nanocrystallites in nanocomposite particles. The size and thermal stability of FeNi nanoparticles prepared under same reaction condition was found to be dependent on the type and the molecular weight of the polymer used. However, the magnetic properties of nanocomposite particles were not influenced by the polymers. The study highlights subtle differences in using polymers during the synthesis of alloyed nanocomposite particles.
The results of density functional theory calculations and measurements using X-ray photoelectron spectroscopy of Co-nanoparticles dispersed on graphene/Cu are presented. It is found that for low cobalt thickness (0.02 nm - 0.06 nm) the Co forms islan ds distributed non-homogeneously which are strongly oxidized under exposure to air to form cobalt oxides. At greater thicknesses up to 2 nm the upper Co-layers are similarly oxidized whereas the lower layers contacting the graphene remain metallic. The measurements indicate a Co2+ oxidation state with no evidence of a 3+ state appearing at any Co thickness, consistent with CoO and Co[OH]2. The results show that thicker Co (2nm) coverage induces the formation of a protective oxide layer while providing the magnetic properties of Co nanoparticles.
Near infrared pump-probe spectroscopy has been used to measure the ultrafast dynamics of photoexcited charge carriers in monolayer and multilayer graphene. We observe two decay processes occurring on 100 fs and 2 ps timescales. The first is attribute d to the rapid electron-phonon thermalisation in the system. The second timescale is found to be due to the slow decay of hot phonons. Using a simple theoretical model we calculate the hot phonon decay rate and show that it is significantly faster in monolayer flakes than in multilayer ones. In contrast to recent claims, we show that this enhanced decay rate is not due to the coupling to substrate phonons, since we have also seen the same effect in suspended flakes. Possible intrinsic decay mechanisms that could cause such an effect are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا