ترغب بنشر مسار تعليمي؟ اضغط هنا

Heterostructures of MXenes and N-doped graphene as highly active bifunctional electrocatalysts

76   0   0.0 ( 0 )
 نشر من قبل Si Zhou
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

MXenes with versatile chemistry and superior electrical conductivity are prevalent candidate materials for energy storage and catalysts. Inspired by recent experiments of hybridizing MXenes with carbon materials, here we theoretically design a series of heterostructures of N-doped graphene supported by MXene monolayers as bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). Our first-principles calculations show that the graphitic sheet on V2C and Mo2C MXenes are highly active with an ORR overpotential down to 0.36 V and reaction free energies for the HER approaching zero, both with low kinetic barriers. Such outstanding catalytic activities originate from the electronic coupling between the graphitic sheet and the MXene, and can be correlated with the pz band center of surface carbon atoms and the work function of the heterostructures. Our findings screen a novel form of highly active electrocatalysts by taking advantage of the fast charge transfer kinetics and strong interfacial coupling of MXenes, and illuminate a universal mechanism for modulating the catalytic properties of two-dimensional hybrid materials.

قيم البحث

اقرأ أيضاً

538 - Yuan Liu , Jiming Sheng , Hao Wu 2015
Graphene/silicon heterostructures have attracted tremendous interest as a new platform for diverse electronic and photonic devices such as barristors, solar cells, optical modulators, and chemical sensors. The studies to date largely focus on junctio ns between graphene and lightly-doped silicon, where a Schottky barrier is believed to dominate the carrier transport process. Here we report a systematic investigation of carrier transport across the heterojunctions formed between graphene and highly-doped silicon. By varying the silicon doping level and the measurement temperature, we show that the carrier transport across the graphene/p++-Si heterojunction is dominated by tunneling effect through the native oxide. We further demonstrate that the tunneling current can be effectively modulated by the external gate electrical field, resulting in a vertical tunneling transistor. Benefited from the large density of states of highly doped silicon, our tunneling transistors can deliver a current density over 20 A/cm2, about two orders of magnitude higher than previous graphene/insulator/graphene tunneling transistor at the same on/off ratio.
Monolayer structures made up of purely one kind of atoms are fascinating. Many kinds of honeycomb systems including carbon, silicon, germanium, tin, phosphorus and arsenic have been shown to be stable. However, so far the structures are restricted to group IV and V elements. In this letter, we systematically investigate the stability of monolayer structures made up of aluminium, in four different geometric configurations (planar, buckled, puckered and triangular), by employing density functional theory based electronic structure calculation. Our results on cohesive energy and phonon dispersion predict that only planar honeycomb structure made up of aluminium is stable. We call it aluminene according to the standard naming convention. It is a metal. Results of electronic band structure suggest that it may be regarded as a highly hole doped graphene. We also present the tight-binding model and the Dirac theory to discuss the electronic properties of aluminene.
We present a method for decoupling epitaxial graphene grown on SiC(0001) by intercalation of a layer of fluorine at the interface. The fluorine atoms do not enter into a covalent bond with graphene, but rather saturate the substrate Si bonds. This co nfiguration of the fluorine atoms induces a remarkably large hole density of p approx 4.5 times 1013 cm-2, equivalent to the location of the Fermi level at 0.79 eV above the Dirac point ED .
We report the fabrication of both n-type and p-type WSe2 field effect transistors with hexagonal boron nitride passivated channels and ionic-liquid (IL)-gated graphene contacts. Our transport measurements reveal intrinsic channel properties including a metal-insulator transition at a characteristic conductivity close to the quantum conductance e2/h, a high ON/OFF ratio of >107 at 170 K, and large electron and hole mobility of ~200 cm2V-1s-1 at 160 K. Decreasing the temperature to 77 K increases mobility of electrons to ~330 cm2V-1s-1 and that of holes to ~270 cm2V-1s-1. We attribute our ability to observe the intrinsic, phonon limited conduction in both the electron and hole channels to the drastic reduction of the Schottky barriers between the channel and the graphene contact electrodes using IL gating. We elucidate this process by studying a Schottky diode consisting of a single graphene/WSe2 Schottky junction. Our results indicate the possibility to utilize chemically or electrostatically highly doped graphene for versatile, flexible and transparent low-resistance Ohmic contacts to a wide range of quasi-2D semiconductors. KEYWORDS: MoS2, WSe2, field-effect transistors, graphene, Schottky barrier, ionic-liquid gate
Simple, yet versatile, methods to functionalize graphene flakes with metal (oxide) nanoparticles are in demand, particularly for the development of advanced catalysts. Herein, based on light-induced electrochemistry, a laser-assisted, continuous, sol ution route for the simultaneous reduction and modification of graphene oxide with catalytic nanoparticles is reported. Electrochemical graphene oxide (EGO) is used as starting material and electron-hole pair source due to its low degree of oxidation, which imparts structural integrity and an ability to withstand photodegradation. Simply illuminating a solution stream containing EGO and metal salt (e.g., H2PtCl6 or RuCl3) with a 248 nm wavelength laser produces reduced EGO (rEGO, oxygen content 4.0 at%) flakes, decorated with Pt (~2.0 nm) or RuO2 (~2.8 nm) nanoparticles. The RuO2-rEGO flakes exhibit superior catalytic activity for the oxygen evolution reaction, requiring a small overpotential of 225 mV to reach a current density of 10 mA cm-2. The Pt-rEGO flakes (10.2 wt% of Pt) show enhanced mass activity for the hydrogen evolution reaction, and similar performance for oxygen reduction reaction compared to a commercial 20 wt% Pt/C catalyst. This simple production method is also used to deposit PtPd alloy and MnOx nanoparticles on rEGO, demonstrating its versatility in synthesizing functional nanoparticle-modified graphene materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا