ﻻ يوجد ملخص باللغة العربية
The results of density functional theory calculations and measurements using X-ray photoelectron spectroscopy of Co-nanoparticles dispersed on graphene/Cu are presented. It is found that for low cobalt thickness (0.02 nm - 0.06 nm) the Co forms islands distributed non-homogeneously which are strongly oxidized under exposure to air to form cobalt oxides. At greater thicknesses up to 2 nm the upper Co-layers are similarly oxidized whereas the lower layers contacting the graphene remain metallic. The measurements indicate a Co2+ oxidation state with no evidence of a 3+ state appearing at any Co thickness, consistent with CoO and Co[OH]2. The results show that thicker Co (2nm) coverage induces the formation of a protective oxide layer while providing the magnetic properties of Co nanoparticles.
We have investigated the electronic structure of graphene supported on Re(0001) before and after the intercalation of one monolayer of Ag by means of angle-resolved photoemission spectroscopy measurements and density functional theory calculations. T
The effect of oxygen adsorption on the local structure and electronic properties of monolayer graphene grown on SiC(0001) has been studied by means of Low Energy Electron Microscopy (LEEM), microprobe Low Energy Electron Diffraction (muLEED) and micr
In graphene growth, island symmetry can become lower than the intrinsic symmetries of both graphene and the substrate. First-principles calculations and Monte Carlo modeling explain the shapes observed in our experiments and earlier studies for vario
Near infrared pump-probe spectroscopy has been used to measure the ultrafast dynamics of photoexcited charge carriers in monolayer and multilayer graphene. We observe two decay processes occurring on 100 fs and 2 ps timescales. The first is attribute
Epitaxial graphene layers were grown on the C-face of 4H- and 6H-SiC using an argon-mediated growth process. Variations in growth temperature and pressure were found to dramatically affect the morphological properties of the layers. The presence of a