ﻻ يوجد ملخص باللغة العربية
Polymer assisted spherical FeNi nanoparticles were prepared via wet chemical method using hydrazine as a reducing agent and polymers (PVP and PEG) as reducing and stabilizing agent. Structural studies performed using XRD and TEM shows uniform dispersion of fine FeNi nanocrystallites in nanocomposite particles. The size and thermal stability of FeNi nanoparticles prepared under same reaction condition was found to be dependent on the type and the molecular weight of the polymer used. However, the magnetic properties of nanocomposite particles were not influenced by the polymers. The study highlights subtle differences in using polymers during the synthesis of alloyed nanocomposite particles.
We report the magnetic properties of magnetic nano-composite, consisting of different quantity of NiFe2O4 nanoparticles in polymer matrix. The nanoparticles exhibited a typical magnetization blocking, which is sensitive on the variation of magnetic f
We report a novel synthesis for near monodisperse, sub-10-nm Bi2Te3 nanoparticles. At first, a new reduction route to bismuth nanoparticles is described which are applied as starting materials in the formation of rhombohedral Bi2Te3 nanoparticles. Af
The six nanosized PrF3 samples were synthesized using two different chemical reactions and different time of hydrothermal reaction. The X-ray and HRTEM experiments showed high crystallinity of synthesized samples. For all samples the particles size d
Microparticles including paraffin are currently used for textiles coating in order to deaden thermal shocks. We will show that polymer nanoparticles embedded in those microsized capsules allow for decreasing the thermal conductivity of the coating an
The nucleation and growth of CdS nanoparticles within a polymer matrix was followed by in-situ synchrotron X-ray diffraction. The nanoparticles form by effect of the thermolysis of thiolate precursors at temperatures between 200 and 300 Celsius degre