ترغب بنشر مسار تعليمي؟ اضغط هنا

Conditional Contrastive Learning: Removing Undesirable Information in Self-Supervised Representations

134   0   0.0 ( 0 )
 نشر من قبل Yao-Hung Tsai
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Self-supervised learning is a form of unsupervised learning that leverages rich information in data to learn representations. However, data sometimes contains certain information that may be undesirable for downstream tasks. For instance, gender information may lead to biased decisions on many gender-irrelevant tasks. In this paper, we develop conditional contrastive learning to remove undesirable information in self-supervised representations. To remove the effect of the undesirable variable, our proposed approach conditions on the undesirable variable (i.e., by fixing the variations of it) during the contrastive learning process. In particular, inspired by the contrastive objective InfoNCE, we introduce Conditional InfoNCE (C-InfoNCE), and its computationally efficient variant, Weak-Conditional InfoNCE (WeaC-InfoNCE), for conditional contrastive learning. We demonstrate empirically that our methods can successfully learn self-supervised representations for downstream tasks while removing a great level of information related to the undesirable variables. We study three scenarios, each with a different type of undesirable variables: task-irrelevant meta-information for self-supervised speech representation learning, sensitive attributes for fair representation learning, and domain specification for multi-domain visual representation learning.

قيم البحث

اقرأ أيضاً

Recent methods for learning unsupervised visual representations, dubbed contrastive learning, optimize the noise-contrastive estimation (NCE) bound on mutual information between two views of an image. NCE uses randomly sampled negative examples to no rmalize the objective. In this paper, we show that choosing difficult negatives, or those more similar to the current instance, can yield stronger representations. To do this, we introduce a family of mutual information estimators that sample negatives conditionally -- in a ring around each positive. We prove that these estimators lower-bound mutual information, with higher bias but lower variance than NCE. Experimentally, we find our approach, applied on top of existing models (IR, CMC, and MoCo) improves accuracy by 2-5% points in each case, measured by linear evaluation on four standard image datasets. Moreover, we find continued benefits when transferring features to a variety of new image distributions from the Meta-Dataset collection and to a variety of downstream tasks such as object detection, instance segmentation, and keypoint detection.
Advanced self-supervised visual representation learning methods rely on the instance discrimination (ID) pretext task. We point out that the ID task has an implicit semantic consistency (SC) assumption, which may not hold in unconstrained datasets. I n this paper, we propose a novel contrastive mask prediction (CMP) task for visual representation learning and design a mask contrast (MaskCo) framework to implement the idea. MaskCo contrasts region-level features instead of view-level features, which makes it possible to identify the positive sample without any assumptions. To solve the domain gap between masked and unmasked features, we design a dedicated mask prediction head in MaskCo. This module is shown to be the key to the success of the CMP. We evaluated MaskCo on training datasets beyond ImageNet and compare its performance with MoCo V2. Results show that MaskCo achieves comparable performance with MoCo V2 using ImageNet training dataset, but demonstrates a stronger performance across a range of downstream tasks when COCO or Conceptual Captions are used for training. MaskCo provides a promising alternative to the ID-based methods for self-supervised learning in the wild.
We study self-supervised learning on graphs using contrastive methods. A general scheme of prior methods is to optimize two-view representations of input graphs. In many studies, a single graph-level representation is computed as one of the contrasti ve objectives, capturing limited characteristics of graphs. We argue that contrasting graphs in multiple subspaces enables graph encoders to capture more abundant characteristics. To this end, we propose a group contrastive learning framework in this work. Our framework embeds the given graph into multiple subspaces, of which each representation is prompted to encode specific characteristics of graphs. To learn diverse and informative representations, we develop principled objectives that enable us to capture the relations among both intra-space and inter-space representations in groups. Under the proposed framework, we further develop an attention-based representor function to compute representations that capture different substructures of a given graph. Built upon our framework, we extend two current methods into GroupCL and GroupIG, equipped with the proposed objective. Comprehensive experimental results show our framework achieves a promising boost in performance on a variety of datasets. In addition, our qualitative results show that features generated from our representor successfully capture various specific characteristics of graphs.
114 - Jiaqi Zeng , Pengtao Xie 2020
Graph classification is a widely studied problem and has broad applications. In many real-world problems, the number of labeled graphs available for training classification models is limited, which renders these models prone to overfitting. To addres s this problem, we propose two approaches based on contrastive self-supervised learning (CSSL) to alleviate overfitting. In the first approach, we use CSSL to pretrain graph encoders on widely-available unlabeled graphs without relying on human-provided labels, then finetune the pretrained encoders on labeled graphs. In the second approach, we develop a regularizer based on CSSL, and solve the supervised classification task and the unsupervised CSSL task simultaneously. To perform CSSL on graphs, given a collection of original graphs, we perform data augmentation to create augmented graphs out of the original graphs. An augmented graph is created by consecutively applying a sequence of graph alteration operations. A contrastive loss is defined to learn graph encoders by judging whether two augmented graphs are from the same original graph. Experiments on various graph classification datasets demonstrate the effectiveness of our proposed methods.
Leveraging temporal information has been regarded as essential for developing video understanding models. However, how to properly incorporate temporal information into the recent successful instance discrimination based contrastive self-supervised l earning (CSL) framework remains unclear. As an intuitive solution, we find that directly applying temporal augmentations does not help, or even impair video CSL in general. This counter-intuitive observation motivates us to re-design existing video CSL frameworks, for better integration of temporal knowledge. To this end, we present Temporal-aware Contrastive self-supervised learningTaCo, as a general paradigm to enhance video CSL. Specifically, TaCo selects a set of temporal transformations not only as strong data augmentation but also to constitute extra self-supervision for video understanding. By jointly contrasting instances with enriched temporal transformations and learning these transformations as self-supervised signals, TaCo can significantly enhance unsupervised video representation learning. For instance, TaCo demonstrates consistent improvement in downstream classification tasks over a list of backbones and CSL approaches. Our best model achieves 85.1% (UCF-101) and 51.6% (HMDB-51) top-1 accuracy, which is a 3% and 2.4% relative improvement over the previous state-of-the-art.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا