ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic self-consistent field approach for studying kinetic processes in multiblock copolymer melts

60   0   0.0 ( 0 )
 نشر من قبل Friederike Schmid
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The self-consistent field theory is a popular and highly successful theoretical framework for studying equilibrium (co)polymer systems at the mesoscopic level. Dynamic density functionals allow one to use this framework for studying dynamical processes in the diffusive, non-inertial regime. The central quantity in these approaches is the mobility function, which describes the effect of chain connectivity on the nonlocal response of monomers to thermodynamic driving fields. In a recent study [Mantha et al, Macromolecules 53, 3409 (2020)], we have developed a method to systematically construct mobility functions from reference fine-grained simulations. Here we focus on melts of linear chains in the Rouse regime and show how the mobility functions can be calculated semi-analytically for multiblock copolymers with arbitrary sequences without resorting to simulations. In this context, an accurate approximate expression for the single-chain dynamic structure factor is derived. Several limiting regimes are discussed. Then we apply the resulting density functional theory to study ordering processes in a two-length scale block copolymer system after instantaneous quenches into the ordered phase. Different dynamical regimes in the ordering process are identified: At early times, the ordering on short scales dominates; at late times, the ordering on larger scales takes over. For large quench depths, the system does not necessarily relax into the true equilibrium state. Our density functional approach could be used for the computer-assisted design of quenching protocols in order to create novel nonequilibrium materials.



قيم البحث

اقرأ أيضاً

We have used the Scheutjens-Fleer self-consistent field (SF-SCF) method to predict the self-assembly of triblock copolymers with a solvophilic middle block and sufficiently long solvophobic outer blocks. We model copolymers consisting of polyethylene oxide (PEO) as solvophilic block and poly(lactic-co-glycolic) acid (PLGA) or poly({ko}-caprolactone) (PCL) as solvophobic block. These copolymers form structurally quenched spherical micelles provided the solvophilic block is long enough. Predictions are calibrated on experimental data for micelles composed of PCL-PEO-PCL and PLGA-PEO-PLGA triblock copolymers prepared via the nanoprecipitation method. We establish effective interaction parameters that enable us to predict various micelle properties such as the hydrodynamic size, the aggregation number and the loading capacity of the micelles for hydrophobic species that are consistent with experimental finding.
Simulations of five different coarse-grained models of symmetric diblock copolymer melts are compared to demonstrate a universal (i.e., model-independent) dependence of the free energy on the invariant degree of polymerization $overline{N}$, and to s tudy universal properties of the order-disorder transition (ODT). The ODT appears to exhibit two regimes: Systems of very long chains ($overline{N} gtrsim 10^{4}$) are well described by the Fredrickson-Helfand theory, which assumes weak segregation near the ODT. Systems of smaller but experimentally relevant values, $overline{N} lesssim 10^4$, undergo a transition between strongly segregated disordered and lamellar phases that, though universal, is not adequately described by any existing theory.
198 - Manman Ma , Zhenli Xu 2014
Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects i n the framework of the self-consistent field theory. The model incorporates a space-or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Huckel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory, and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.
Multiblock copolymer chains in implicit nonselective solvents are studied by Monte Carlo method which employs a parallel tempering algorithm. Chains consisting of 120 $A$ and 120 $B$ monomers, arranged in three distinct microarchitectures: $(10-10)_{ 12}$, $(6-6)_{20}$, and $(3-3)_{40}$, collapse to globular states upon cooling, as expected. By varying both the reduced temperature $T^*$ and compatibility between monomers $omega$, numerous intra-globular structures are obtained: diclusters (handshake, spiral, torus with a core, etc.), triclusters, and $n$-clusters with $n>3$ (lamellar and other), which are reminiscent of the block copolymer nanophases for spherically confined geometries. Phase diagrams for various chains in the $(T^*, omega)$-space are mapped. The structure factor $S(k)$, for a selected microarchitecture and $omega$, is calculated. Since $S(k)$ can be measured in scattering experiments, it can be used to relate simulation results to an experiment. Self-assembly in those systems is interpreted in term of competition between minimization of the interfacial area separating different types of monomers and minimization of contacts between chain and solvent. Finally, the relevance of this model to the protein folding is addressed.
173 - Pei Liu , Manman Ma , Zhenli Xu 2015
The interaction force between likely charged particles/surfaces is usually repulsive due to the Coulomb interaction. However, the counterintuitive like-charge attraction in electrolytes has been frequently observed in experiments, which has been theo retically debated for a long time. It is widely known that the mean field Poisson-Boltzmann theory cannot explain or predict this anomalous feature since it ignores many-body properties. In this paper, we develop efficient algorithm and perform the force calculation between two interfaces using a set of self-consistent equations which properly takes into account the electrostatic correlation and the dielectric-boundary effects. By solving the equations and calculating the pressure with the Debye-charging process, we show that the self-consistent equations could be used to study the attraction between like-charge surfaces from weak-coupling to mediate-coupling regime, and that the attraction is due to the electrostatics-driven entropic force which is significantly enhanced by the dielectric depletion of mobile ions. A systematic investigation shows that the interaction forces can be tuned by material permittivity, ionic size and valence, and salt concentration, and that the like-charge attraction exists only for specific regime of these parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا