ﻻ يوجد ملخص باللغة العربية
The interaction force between likely charged particles/surfaces is usually repulsive due to the Coulomb interaction. However, the counterintuitive like-charge attraction in electrolytes has been frequently observed in experiments, which has been theoretically debated for a long time. It is widely known that the mean field Poisson-Boltzmann theory cannot explain or predict this anomalous feature since it ignores many-body properties. In this paper, we develop efficient algorithm and perform the force calculation between two interfaces using a set of self-consistent equations which properly takes into account the electrostatic correlation and the dielectric-boundary effects. By solving the equations and calculating the pressure with the Debye-charging process, we show that the self-consistent equations could be used to study the attraction between like-charge surfaces from weak-coupling to mediate-coupling regime, and that the attraction is due to the electrostatics-driven entropic force which is significantly enhanced by the dielectric depletion of mobile ions. A systematic investigation shows that the interaction forces can be tuned by material permittivity, ionic size and valence, and salt concentration, and that the like-charge attraction exists only for specific regime of these parameters.
Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects i
We determine exactly the short-distance effective potential between two guest charges immersed in a two-dimensional two-component charge-asymmetric plasma composed of positively ($q_1 = +1$) and negatively ($q_2 = -1/2$) charged point particles. The
When non-adsorbing polymers are added to an isotropic suspension of rod-like colloids, the colloids effectively attract each other via depletion forces. We performed Monte Carlo simulations to study the phase diagram of such rod-polymer mixture. The
Bilayer membranes self-assembled from amphiphilic molecules such as lipids, surfactants and block copolymers are ubiquitous in biological and physiochemical systems. The shape and structure of bilayer membranes depend crucially on their mechanical pr
We study the elasto-plastic behavior of dense attractive emulsions under mechanical perturbation. The attraction is introduced through non-specific depletion interactions between the droplets and is controlled by changing the concentration of surfact