ﻻ يوجد ملخص باللغة العربية
Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space-or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Huckel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory, and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.
We present a lattice Monte Carlo algorithm based on the one originally proposed by Maggs and Rossetto for simulating electrostatic interactions in inhomogeneous dielectric media. The original algorithm is known to produce attractive interactions betw
The self-consistent field theory is a popular and highly successful theoretical framework for studying equilibrium (co)polymer systems at the mesoscopic level. Dynamic density functionals allow one to use this framework for studying dynamical process
The self-consistent field theory (SCFT) is a powerful framework for the study of the phase behavior and structural properties of many-body systems. In particular, polymeric SCFT has been successfully applied to inhomogeneous polymeric systems such as
The interaction force between likely charged particles/surfaces is usually repulsive due to the Coulomb interaction. However, the counterintuitive like-charge attraction in electrolytes has been frequently observed in experiments, which has been theo
We give a novel and simple proof of the DFT expression for the interatomic force field that drives the motion of atoms in classical Molecular Dynamics, based on the observation that the ground state electronic energy, seen as a functional of the exte