ﻻ يوجد ملخص باللغة العربية
An intelligent reflecting surface (IRS)-aided wireless powered mobile edge computing (WP-MEC) system is conceived, where each devices computational task can be divided into two parts for local computing and offloading to mobile edge computing (MEC) servers, respectively. Both time division multiple access (TDMA) and non-orthogonal multiple access (NOMA) schemes are considered for uplink (UL) offloading. Given the capability of IRSs in intelligently reconfiguring wireless channels over time, it is fundamentally unknown which multiple access scheme is superior for MEC UL offloading. To answer this question, we first investigate the impact of three different dynamic IRS beamforming (DIBF) schemes on the computation rate of both offloading schemes, based on the flexibility for the IRS in adjusting its beamforming (BF) vector in each transmission frame. Under the DIBF framework, computation rate maximization problems are formulated for both the NOMA and TDMA schemes, respectively, by jointly optimizing the IRS passive BF and the resource allocation. We rigorously prove that offloading adopting TDMA can achieve the same computation rate as that of NOMA, when all the devices share the same IRS BF vector during the UL offloading. By contrast, offloading exploiting TDMA outperforms NOMA, when the IRS BF vector can be flexibly adapted for UL offloading. Despite the non-convexity of the computation rate maximization problems for each DIBF scheme associated with highly coupled optimization variables, we conceive computationally efficient algorithms by invoking alternating optimization. Our numerical results demonstrate the significant performance gains achieved by the proposed designs over various benchmark schemes.
The high reflect beamforming gain of the intelligent reflecting surface (IRS) makes it appealing not only for wireless information transmission but also for wireless power transfer. In this letter, we consider an IRS-assisted wireless powered communi
Mobile-edge computing (MEC) and wireless power transfer are technologies that can assist in the implementation of next generation wireless networks, which will deploy a large number of computational and energy limited devices. In this letter, we cons
By exploiting the superiority of non-orthogonal multiple access (NOMA), NOMA-aided mobile edge computing (MEC) can provide scalable and low-latency computing services for the Internet of Things. However, given the prevalent stochasticity of wireless
Multi-access edge computing (MEC) and non-orthogonal multiple access (NOMA) have been regarded as promising technologies to improve computation capability and offloading efficiency of the mobile devices in the sixth generation (6G) mobile system. Thi
In this paper, we propose a new dynamic IRS beamforming framework to boost the sum throughput of an intelligent reflecting surface (IRS) aided wireless powered communication network (WPCN). Specifically, the IRS phase-shift vectors across time and re