ترغب بنشر مسار تعليمي؟ اضغط هنا

IRS-Assisted Ambient Backscatter Communications Utilizing Deep Reinforcement Learning

180   0   0.0 ( 0 )
 نشر من قبل Xiaolun Jia
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider an ambient backscatter communication (AmBC) system aided by an intelligent reflecting surface (IRS). The optimization of the IRS to assist AmBC is extremely difficult when there is no prior channel knowledge, for which no design solutions are currently available. We utilize a deep reinforcement learning-based framework to jointly optimize the IRS and reader beamforming, with no knowledge of the channels or ambient signal. We show that the proposed framework can facilitate effective AmBC communication with a detection performance comparable to several benchmarks under full channel knowledge.



قيم البحث

اقرأ أيضاً

The realization of practical intelligent reflecting surface (IRS)-assisted multi-user communication (IRS-MUC) systems critically depends on the proper beamforming design exploiting accurate channel state information (CSI). However, channel estimation (CE) in IRS-MUC systems requires a significantly large training overhead due to the numerous reflection elements involved in IRS. In this paper, we adopt a deep learning approach to implicitly learn the historical channel features and directly predict the IRS phase shifts for the next time slot to maximize the average achievable sum-rate of an IRS-MUC system taking into account the user mobility. By doing this, only a low-dimension multiple-input single-output (MISO) CE is needed for transmit beamforming design, thus significantly reducing the CE overhead. To this end, a location-aware convolutional long short-term memory network (LA-CLNet) is first developed to facilitate predictive beamforming at IRS, where the convolutional and recurrent units are jointly adopted to exploit both the spatial and temporal features of channels simultaneously. Given the predictive IRS phase shift beamforming, an instantaneous CSI (ICSI)-aware fully-connected neural network (IA-FNN) is then proposed to optimize the transmit beamforming matrix at the access point. Simulation results demonstrate that the sum-rate performance achieved by the proposed method approaches that of the genie-aided scheme with the full perfect ICSI.
Existing tag signal detection algorithms inevitably suffer from a high bit error rate (BER) due to the difficulties in estimating the channel state information (CSI). To eliminate the requirement of channel estimation and to improve the system perfor mance, in this paper, we adopt a deep transfer learning (DTL) approach to implicitly extract the features of communication channel and directly recover tag symbols. Inspired by the powerful capability of convolutional neural networks (CNN) in exploring the features of data in a matrix form, we design a novel covariance matrix aware neural network (CMNet)-based detection scheme to facilitate DTL for tag signal detection, which consists of offline learning, transfer learning, and online detection. Specifically, a CMNet-based likelihood ratio test (CMNet-LRT) is derived based on the minimum error probability (MEP) criterion. Taking advantage of the outstanding performance of DTL in transferring knowledge with only a few training data, the proposed scheme can adaptively fine-tune the detector for different channel environments to further improve the detection performance. Finally, extensive simulation results demonstrate that the BER performance of the proposed method is comparable to that of the optimal detection method with perfect CSI.
In this paper, we propose a deep learning aided list approximate message passing (AMP) algorithm to further improve the user identification performance in massive machine type communications. A neural network is employed to identify a suspicious devi ce which is most likely to be falsely alarmed during the first round of the AMP algorithm. The neural network returns the false alarm likelihood and it is expected to learn the unknown features of the false alarm event and the implicit correlation structure in the quantized pilot matrix. Then, via employing the idea of list decoding in the field of error control coding, we propose to enforce the suspicious device to be inactive in every iteration of the AMP algorithm in the second round. The proposed scheme can effectively combat the interference caused by the suspicious device and thus improve the user identification performance. Simulations demonstrate that the proposed algorithm improves the mean squared error performance of recovering the sparse unknown signals in comparison to the conventional AMP algorithm with the minimum mean squared error denoiser.
We introduce a novel system setup where a backscatter device operates in the presence of an intelligent reflecting surface (IRS). In particular, we study the bistatic backscatter communication (BackCom) system assisted by an IRS. The phase shifts at the IRS are optimized jointly with the transmit beamforming vector of the carrier emitter to minimize the transmit power consumption at the carrier emitter whilst guaranteeing a required BackCom performance. The unique channel characteristics arising from multiple reflections at the IRS render the optimization problem highly non-convex. Therefore, we jointly utilize the minorization-maximization algorithm and the semidefinite relaxation technique to present an approximate solution for the optimal IRS phase shift design. We also extend our analytical results to the monostatic BackCom system. Numerical results indicate that the introduction of the IRS brings about considerable reductions in transmit power, even with moderate IRS sizes, which can be translated to range increases over the non-IRS-assisted BackCom system.
One of the key challenges of the Internet of Things (IoT) is to sustainably power the large number of IoT devices in real-time. In this paper, we consider a wireless power transfer (WPT) scenario between an energy transmitter (ET) capable of retrodir ective WPT and an energy receiver (ER) capable of ambient backscatter in the presence of an ambient source (AS). The ER requests WPT by backscattering signals from an AS towards the ET, which then retrodirectively beamforms an energy signal towards the ER. To remove the inherent direct-link ambient interference, we propose a scheme of ambient backscatter training. Specifically, the ER varies the reflection coefficient multiple times while backscattering each ambient symbol according to a certain pattern called the training sequence, whose design criterion we also present. To evaluate the system performance, we derive an analytical expression for the average harvested power at the ER. Our numerical results show that with the proposed scheme, the ER harvests tens of $mu$W of power, without any CSI estimation or active transmission from the ER, which is a significant improvement for low-power and low-cost ambient backscatter devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا