ﻻ يوجد ملخص باللغة العربية
This paper is concerned with the mathematical analysis of the time-domain electromagnetic scattering problem in an infinite rectangular waveguide. A transparent boundary condition is developed to reformulate the problem into an equivalent initial boundary value problem in a bounded domain. The well-posedness and stability are obtained for the reduced problem. The perfectly matched layer method is studied to truncate the waveguide. It is shown that the truncated problem attains a unique solution. Moreover, an explicit error estimate is given between the solutions of the original scattering problem and the truncated problem. Based on the estimate, the stability and exponential convergence are established for the truncated problem. The optimal bound is achieved for the error with explicit dependence on the parameters of the perfectly matched layer.
In this paper, a perfectly matched layer (PML) method is proposed to solve the time-domain electromagnetic scattering problems in 3D effectively. The PML problem is defined in a spherical layer and derived by using the Laplace transform and real coor
In this paper, we propose and study the uniaxial perfectly matched layer (PML) method for three-dimensional time-domain electromagnetic scattering problems, which has a great advantage over the spherical one in dealing with problems involving anisotr
This paper provides a view of Maxwells equations from the perspective of complex variables. The study is made through complex differential forms and the Hodge star operator in $mathbb{C}^2$ with respect to the Euclidean and the Minkowski metrics. It
Pride (1994, Phys. Rev. B 50 15678-96) derived the governing model of electroseismic conversion, in which Maxwells equations are coupled with Biots equations through an electrokinetic mobility parameter. The inverse problem of electroseismic conversi
Let $V(t) = e^{tG_b},: t geq 0,$ be the semigroup generated by Maxwells equations in an exterior domain $Omega subset {mathbb R}^3$ with dissipative boundary condition $E_{tan}- gamma(x) ( u wedge B_{tan}) = 0, gamma(x) > 0, forall x in Gamma = parti