ﻻ يوجد ملخص باللغة العربية
This paper provides a view of Maxwells equations from the perspective of complex variables. The study is made through complex differential forms and the Hodge star operator in $mathbb{C}^2$ with respect to the Euclidean and the Minkowski metrics. It shows that holomorphic functions give rise to nontrivial solutions, and the inner product between the electric and the magnetic fields is considered in this case. Further, it obtains a simple necessary and sufficient condition regarding harmonic solutions to the equations. In the end, the paper gives an interpretation of the Lorenz gauge condition in terms of the codifferential operator.
Let $V(t) = e^{tG_b},: t geq 0,$ be the semigroup generated by Maxwells equations in an exterior domain $Omega subset {mathbb R}^3$ with dissipative boundary condition $E_{tan}- gamma(x) ( u wedge B_{tan}) = 0, gamma(x) > 0, forall x in Gamma = parti
A fundamental result of classical electromagnetism is that Maxwells equations imply that electric charge is locally conserved. Here we show the converse: Local charge conservation implies the local existence of fields satisfying Maxwells equations. T
We study the time harmonic Maxwell equations in a meta-material consisting of perfect conductors and void space. The meta-material is assumed to be periodic with period $eta > 0$; we study the behaviour of solutions $(E^{eta}, H^{eta})$ in the limit
We study the blowup behavior for the focusing energy-supercritical semilinear wave equation in 3 space dimensions without symmetry assumptions on the data. We prove the stability of the ODE blowup profile.
In this paper, we provide rigorous justification of the hydrostatic approximation and the derivation of primitive equations as the small aspect ratio limit of the incompressible three-dimensional Navier-Stokes equations in the anisotropic horizontal