ﻻ يوجد ملخص باللغة العربية
Let $V(t) = e^{tG_b},: t geq 0,$ be the semigroup generated by Maxwells equations in an exterior domain $Omega subset {mathbb R}^3$ with dissipative boundary condition $E_{tan}- gamma(x) ( u wedge B_{tan}) = 0, gamma(x) > 0, forall x in Gamma = partial Omega.$ We study the case when $Omega = {x in {mathbb R^3}:: |x| > 1}$ and $gamma eq 1$ is a constant. We establish a Weyl formula for the counting function of the negative real eigenvalues of $G_b.$
This paper provides a view of Maxwells equations from the perspective of complex variables. The study is made through complex differential forms and the Hodge star operator in $mathbb{C}^2$ with respect to the Euclidean and the Minkowski metrics. It
A fundamental result of classical electromagnetism is that Maxwells equations imply that electric charge is locally conserved. Here we show the converse: Local charge conservation implies the local existence of fields satisfying Maxwells equations. T
We present a general algorithm to show that a scattering operator associated to a semilinear dispersive equation is real analytic, and to compute the coefficients of its Taylor series at any point. We illustrate this method in the case of the Schrodi
We consider the damped/driven cubic NLS equation on the torus of a large period $L$ with a small nonlinearity of size $lambda$, a properly scaled random forcing and dissipation. We examine its solutions under the subsequent limit when first $lambdato
We continue our study of the problem of mixing for a class of PDEs with very degenerate noise. As we established earlier, the uniqueness of stationary measure and its exponential stability in the dual-Lipschitz metric holds under the hypothesis that