ﻻ يوجد ملخص باللغة العربية
In this paper, we propose and study the uniaxial perfectly matched layer (PML) method for three-dimensional time-domain electromagnetic scattering problems, which has a great advantage over the spherical one in dealing with problems involving anisotropic scatterers. The truncated uniaxial PML problem is proved to be well-posed and stable, based on the Laplace transform technique and the energy method. Moreover, the $L^2$-norm and $L^{infty}$-norm error estimates in time are given between the solutions of the original scattering problem and the truncated PML problem, leading to the exponential convergence of the time-domain uniaxial PML method in terms of the thickness and absorbing parameters of the PML layer. The proof depends on the error analysis between the EtM operators for the original scattering problem and the truncated PML problem, which is different from our previous work (SIAM J. Numer. Anal. 58(3) (2020), 1918-1940).
In this paper, a perfectly matched layer (PML) method is proposed to solve the time-domain electromagnetic scattering problems in 3D effectively. The PML problem is defined in a spherical layer and derived by using the Laplace transform and real coor
Consider the electromagnetic scattering of a time-harmonic plane wave by an open cavity which is embedded in a perfectly electrically conducting infinite ground plane. This paper is concerned with the numerical solutions of the transverse electric an
In this paper we consider the inverse electromagnetic scattering for a cavity surrounded by an inhomogeneous medium in three dimensions. The measurements are scattered wave fields measured on some surface inside the cavity, where such scattered wave
We introduce an adaptive element-based domain decomposition (DD) method for solving saddle point problems defined as a block two by two matrix. The algorithm does not require any knowledge of the constrained space. We assume that all sub matrices are
This paper is concerned with the time-dependent acoustic-elastic interaction problem associated with a bounded elastic body immersed in a homogeneous air or fluid above an unbounded rough surface. The well-posedness and stability of the problem are f