ترغب بنشر مسار تعليمي؟ اضغط هنا

Moments and hybrid subconvexity for symmetric-square L-functions

84   0   0.0 ( 0 )
 نشر من قبل Rizwanur Khan
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We establish sharp bounds for the second moment of symmetric-square $L$-functions attached to Hecke Maass cusp forms $u_j$ with spectral parameter $t_j$, where the second moment is a sum over $t_j$ in a short interval. At the central point $s=1/2$ of the $L$-function, our interval is smaller than previous known results. More specifically, for $|t_j|$ of size $T$, our interval is of size $T^{1/5}$, while the previous best was $T^{1/3}$ from work of Lam. A little higher up on the critical line, our second moment yields a subconvexity bound for the symmetric-square $L$-function. More specifically, we get subconvexity at $s=1/2+it$ provided $|t_j|^{6/7+delta}le |t| le (2-delta)|t_j|$ for any fixed $delta>0$. Since $|t|$ can be taken significantly smaller than $|t_j|$, this may be viewed as an approximation to the notorious subconvexity problem for the symmetric-square $L$-function in the spectral aspect at $s=1/2$.



قيم البحث

اقرأ أيضاً

118 - Olga Balkanova 2020
We prove a spectral decomposition formula for averages of Zagier L-series in terms of moments of symmetric square L-functions associated to Maass and holomorphic cusp forms of levels 4, 16, 64.
In this paper we prove a hybrid subconvexity bound for class group $L$-functions associated to a quadratic extension $K/mathbb{Q}$ (real or imaginary). Our proof relies on relating the class group $L$-functions to Eisenstein series evaluated at Heegn er points using formulas due to Hecke. The main technical contribution is the following uniform sup norm bound for Eisenstein series $E(z,1/2+it)ll_varepsilon y^{1/2} (|t|+1)^{1/3+varepsilon}, ygg 1$, extending work of Blomer and Titchmarsh. Finally, we propose a uniform version of the sup norm conjecture for Eisenstein series.
Let $f $ be a holomorphic Hecke eigenforms or a Hecke-Maass cusp form for the full modular group $ SL(2, mathbb{Z})$. In this paper we shall use circle method to prove the Weyl exponent for $GL(2)$ $L$-functions. We shall prove that [ L left( fra c{1}{2} + it right) ll_{f, epsilon} left( 1 + |t|right)^{1/3 + epsilon}, ] for any $epsilon > 0.$
Let $f $ be a holomorphic Hecke eigenform or a Hecke-Maass cusp form for the full modular group $ SL(2, mathbb{Z})$. In this paper we shall use circle method to prove the Weyl exponent for $GL(2)$ $L$-functions. We shall prove that [ L left( frac {1}{2} + it, f right) ll_{f, epsilon} left( 2 + |t|right)^{1/3 + epsilon}, ] for any $epsilon > 0.$
109 - Olga Balkanova 2019
We prove an asymptotic formula for the twisted first moment of Maass form symmetric square L-functions on the critical line and at the critical point. The error term is estimated uniformly with respect to all parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا