ﻻ يوجد ملخص باللغة العربية
We prove a spectral decomposition formula for averages of Zagier L-series in terms of moments of symmetric square L-functions associated to Maass and holomorphic cusp forms of levels 4, 16, 64.
We establish sharp bounds for the second moment of symmetric-square $L$-functions attached to Hecke Maass cusp forms $u_j$ with spectral parameter $t_j$, where the second moment is a sum over $t_j$ in a short interval. At the central point $s=1/2$ of
We prove an asymptotic formula for the twisted first moment of Maass form symmetric square L-functions on the critical line and at the critical point. The error term is estimated uniformly with respect to all parameters.
We prove a new upper bound on the second moment of Maass form symmetric square L-functions defined over Gaussian integers. Combining this estimate with the recent result of Balog-Biro-Cherubini-Laaksonen, we improve the error term in the prime geodesic theorem for the Picard manifold.
We study the average of the product of the central values of two $L$-functions of modular forms $f$ and $g$ twisted by Dirichlet characters to a large prime modulus $q$. As our principal tools, we use spectral theory to develop bounds on averages of
Using the Kuznetsov trace formula, we prove a spectral decomposition for the sums of generalized Dirichlet $L$-functions. Among applications are an explicit formula relating norms of prime geodesics to moments of symmetric square $L$-functions and an