ﻻ يوجد ملخص باللغة العربية
Let $f $ be a holomorphic Hecke eigenform or a Hecke-Maass cusp form for the full modular group $ SL(2, mathbb{Z})$. In this paper we shall use circle method to prove the Weyl exponent for $GL(2)$ $L$-functions. We shall prove that [ L left( frac{1}{2} + it, f right) ll_{f, epsilon} left( 2 + |t|right)^{1/3 + epsilon}, ] for any $epsilon > 0.$
Let $f $ be a holomorphic Hecke eigenforms or a Hecke-Maass cusp form for the full modular group $ SL(2, mathbb{Z})$. In this paper we shall use circle method to prove the Weyl exponent for $GL(2)$ $L$-functions. We shall prove that [ L left( fra
In this paper we shall prove a subconvexity bound for $GL(2) times GL(2)$ $L$-function in $t$-aspect by using a $GL(1)$ circle method.
In this article, we will prove subconvex bounds for $GL(3) times GL(2)$ $L$-functions in depth aspect.
Let $f$ be a cuspidal eigenform (holomorphic or Maass) on the full modular group $SL(2, mathbb{Z})$ . Let $chi$ be a primitive character of modulus $P$. We shall prove the following results: 1. Suppose $P = p^r$, where $p$ is a prime and $requiv 0
Let $phi$ be a Hecke-Maass cusp form for $SL(3, mathbb{Z})$ with Langlands parameters $({bf t}_{i})_{i=1}^{3}$ satisfying $$|{bf t}_{3} - {bf t}_{2}| leq T^{1-xi -epsilon}, quad , {bf t}_{i} approx T, quad , , i=1,2,3$$ with $1/2 < xi <1$ and any $ep