ترغب بنشر مسار تعليمي؟ اضغط هنا

Subconvexity bound for $GL(2)$ L-functions: lowercase{t}-aspect

103   0   0.0 ( 0 )
 نشر من قبل Sumit Kumar
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $f $ be a holomorphic Hecke eigenform or a Hecke-Maass cusp form for the full modular group $ SL(2, mathbb{Z})$. In this paper we shall use circle method to prove the Weyl exponent for $GL(2)$ $L$-functions. We shall prove that [ L left( frac{1}{2} + it, f right) ll_{f, epsilon} left( 2 + |t|right)^{1/3 + epsilon}, ] for any $epsilon > 0.$

قيم البحث

اقرأ أيضاً

Let $f $ be a holomorphic Hecke eigenforms or a Hecke-Maass cusp form for the full modular group $ SL(2, mathbb{Z})$. In this paper we shall use circle method to prove the Weyl exponent for $GL(2)$ $L$-functions. We shall prove that [ L left( fra c{1}{2} + it right) ll_{f, epsilon} left( 1 + |t|right)^{1/3 + epsilon}, ] for any $epsilon > 0.$
In this paper we shall prove a subconvexity bound for $GL(2) times GL(2)$ $L$-function in $t$-aspect by using a $GL(1)$ circle method.
Let $f$ be a cuspidal eigenform (holomorphic or Maass) on the full modular group $SL(2, mathbb{Z})$ . Let $chi$ be a primitive character of modulus $P$. We shall prove the following results: 1. Suppose $P = p^r$, where $p$ is a prime and $requiv 0 (textrm{mod} 3)$. Then we have [ Lleft( f otimes chi, frac{1}{2}right) ll_{f, epsilon} P^{1/3 +epsilon}, ] where $epsilon > 0$ is any positive real number. 2. Suppose $chi$ factorizes as $chi= chi_1 chi_2$, where $ chi_i$s are primitive character modulo $P_i$, where $P_i$ are primes, $P^{1/2 -epsilon} ll P_i ll P^{1/2 + epsilon}$ for $i=1,2$ and $P=P_1 P_2$. We have the Burgess bound [ Lleft( f otimes chi, frac{1}{2}right) ll_{f, epsilon} P^{3/8 +epsilon}, ] where $epsilon > 0$ is any positive real number.
Let $phi$ be a Hecke-Maass cusp form for $SL(3, mathbb{Z})$ with Langlands parameters $({bf t}_{i})_{i=1}^{3}$ satisfying $$|{bf t}_{3} - {bf t}_{2}| leq T^{1-xi -epsilon}, quad , {bf t}_{i} approx T, quad , , i=1,2,3$$ with $1/2 < xi <1$ and any $ep silon>0$. Let $f$ be a holomorphic or Maass Hecke eigenform for $SL(2,mathbb{Z})$. In this article, we prove a sub-convexity bound $$L(phi times f, frac{1}{2}) ll max { T^{frac{3}{2}-frac{xi}{4}+epsilon} , T^{frac{3}{2}-frac{1-2 xi}{4}+epsilon} } $$ for the central values $L(phi times f, frac{1}{2})$ of the Rankin-Selberg $L$-function of $phi$ and $f$, where the implied constants may depend on $f$ and $epsilon$. Conditionally, we also obtain a subconvexity bound for $L(phi times f, frac{1}{2})$ when the spectral parameters of $phi$ are in generic position, that is $${bf t}_{i} - {bf t}_{j} approx T, quad , text{for} , i eq j, quad , {bf t}_{i} approx T , , , i=1,2,3.$$
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا