ﻻ يوجد ملخص باللغة العربية
In this paper we prove a hybrid subconvexity bound for class group $L$-functions associated to a quadratic extension $K/mathbb{Q}$ (real or imaginary). Our proof relies on relating the class group $L$-functions to Eisenstein series evaluated at Heegner points using formulas due to Hecke. The main technical contribution is the following uniform sup norm bound for Eisenstein series $E(z,1/2+it)ll_varepsilon y^{1/2} (|t|+1)^{1/3+varepsilon}, ygg 1$, extending work of Blomer and Titchmarsh. Finally, we propose a uniform version of the sup norm conjecture for Eisenstein series.
We establish sharp bounds for the second moment of symmetric-square $L$-functions attached to Hecke Maass cusp forms $u_j$ with spectral parameter $t_j$, where the second moment is a sum over $t_j$ in a short interval. At the central point $s=1/2$ of
Let $f $ be a holomorphic Hecke eigenforms or a Hecke-Maass cusp form for the full modular group $ SL(2, mathbb{Z})$. In this paper we shall use circle method to prove the Weyl exponent for $GL(2)$ $L$-functions. We shall prove that [ L left( fra
Let $f $ be a holomorphic Hecke eigenform or a Hecke-Maass cusp form for the full modular group $ SL(2, mathbb{Z})$. In this paper we shall use circle method to prove the Weyl exponent for $GL(2)$ $L$-functions. We shall prove that [ L left( frac
In this article, we will prove subconvex bounds for $GL(3) times GL(2)$ $L$-functions in depth aspect.
We provide an introduction to the theory of Eisenstein series and automorphic forms on real simple Lie groups G, emphasising the role of representation theory. It is useful to take a slightly wider view and define all objects over the (rational) adel