ﻻ يوجد ملخص باللغة العربية
A conservative discretization of incompressible Navier-Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.
Discrete exterior calculus (DEC) is a structure-preserving numerical framework for partial differential equations solution, particularly suitable for simplicial meshes. A longstanding and widespread assumption has been that DEC requires special (Dela
This paper presents a low-communication-overhead parallel method for solving the 3D incompressible Navier-Stokes equations. A fully-explicit projection method with second-order space-time accuracy is adopted. Combined with fast Fourier transforms, th
There have been several efforts to Physics-informed neural networks (PINNs) in the solution of the incompressible Navier-Stokes fluid. The loss function in PINNs is a weighted sum of multiple terms, including the mismatch in the observed velocity and
We investigate the spatio-temporal structure of the most likely configurations realising extremely high vorticity or strain in the stochastically forced 3D incompressible Navier-Stokes equations. Most likely configurations are computed by numerically
Discrete Boltzmann model (DBM) is a type of coarse-grained mesoscale kinetic model derived from the Boltzmann equation. Physically, it is roughly equivalent to a hydrodynamic model supplemented by a coarse-grained model for the relevant thermodynamic