ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous broadening of specific heat jump at Tc in high-entropy-alloy-type superconductor TrZr2

85   0   0.0 ( 0 )
 نشر من قبل Aichi Yamashita
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A high-entropy-alloy-type (HEA-type) superconductor is new category of highly disordered superconductors. Therefore, finding brand-new superconducting characteristics in the HEA-type superconductors would open new avenue to investigate the relationship between structural disorder and superconductivity. Here, we report on the remarkable broadening of specific heat jump near a superconducting transition tempreature (Tc) in transition-metal zirconides (TrZr2) with different mixing entropy ({Delta}Smix) at the Tr site. With increasing {Delta}Smix, the superconducting transition seen in specific heat became broader, whereas those seen in magnetization were commonly sharp. Therefore the broadening of specific heat jump would be related to the microscopic inhomogeneity of the formation of Cooper pairs behind the emergence of bulk superconductivity states.

قيم البحث

اقرأ أيضاً

We report specific heat under different magnetic fields for recently discovered quasi-one dimensional Nb2PdS5 superconductor. The studied compound is superconducting below 6 K. Nb2PdS5 is quite robust against magnetic field with dHc/dT of -42 kOe/K. The estimated upper critical field [Hc2(0)] is 190 kOe, clearly surpassing the Pauli-paramagnetic limit of 1.84Tc. Low temperature heat capacity in superconducting state of Nb2PdS5 under different magnetic fields showed s-wave superconductivity with two different gaps. Two quasi-linear slopes in Somerfield-coefficient as a function of applied magnetic field and two band behavior of the electronic heat capacity demonstrate that Nb2PdS5 is a multiband su-perconductor in weak coupling limit with deltagamma/deltaTc=0.9.
We report the discovery of a self-doped multi-layer high Tc superconductor Ba2Ca3Cu4O8F2(F0234) which contains distinctly different superconducting gap magnitudes along its two Fermi surface(FS) sheets. While formal valence counting would imply this material to be an undoped insulator, it is a self-doped superconductor with a Tc of 60K, possessing simultaneously both electron- and hole-doped FS sheets. Intriguingly, the FS sheet characterized by the much larger gap is the electron-doped one, which has a shape disfavoring two electronic features considered to be important for the pairing mechanism: the van Hove singularity and the antiferromagnetic (Pi/a, Pi/a) scattering.
We present a detailed study of the quasiparticle contribution to the low-temperature specific heat of an extreme type-II superconductor at high magnetic fields. Within a T-matrix approximation for the self-energies in the mixed state of a homogeneous superconductor, the electronic specific heat is a linear function of temperature with a linear-$T$ coefficient $gamma_s(H)$ being a nonlinear function of magnetic field $H$. In the range of magnetic fields $Hagt (0.15-0.2)H_{c2}$ where our theory is applicable, the calculated $gamma_s(H)$ closely resembles the experimental data for the borocarbide superconductor YNi$_2$B$_2$C.
Research on high-entropy-alloy (HEA) superconductors is a growing field in material science. In this study, we explored new HEA-type superconductors and discovered a CuAl2-type superconductor Co0.2Ni0.1Cu0.1Rh0.3Ir0.3Zr2 with a HEA-type transition me tal site. A superconducting transition was observed at 8.0 K after electrical resistivity, magnetization, and specific heat measurements. The bulk characteristics of the superconductivity were confirmed through the specific heat measurements. The discovery of superconductivity in HEA-type Co0.2Ni0.1Cu0.1Rh0.3Ir0.3Zr2 will provide a novel pathway to explore new HEA-type superconductors and investigate the relationship between the mixing entropy and superconductivity of HEA-type compounds.
Sn0.8Ag0.2Te is a new superconductor with Tc ~ 2.4 K. The superconducting properties of Sn0.8Ag0.2Te have been investigated by specific heat measurements under magnetic fields. Bulk nature of superconductivity was confirmed from the amplitude of the specific heat jump at the superconducting transition, and the amplitude is consistent with fully-gapped superconductivity. Upper critical field was estimated from specific heat and electrical resistivity measurements under magnetic fields. The Hall coefficient was positive, suggesting that the Ag acts as a p-type dopant in Sn0.8Ag0.2Te.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا