ﻻ يوجد ملخص باللغة العربية
Zero-shot learning (ZSL) aims to recognize novel classes by transferring semantic knowledge from seen classes to unseen classes. Though many ZSL methods rely on a direct mapping between the visual and the semantic space, the calibration deviation and hubness problem limit the generalization capability to unseen classes. Recently emerged generative ZSL methods generate unseen image features to transform ZSL into a supervised classification problem. However, most generative models still suffer from the seen-unseen bias problem as only seen data is used for training. To address these issues, we propose a novel bidirectional embedding based generative model with a tight visual-semantic coupling constraint. We learn a unified latent space that calibrates the embedded parametric distributions of both visual and semantic spaces. Since the embedding from high-dimensional visual features comprise much non-semantic information, the alignment of visual and semantic in latent space would inevitably been deviated. Therefore, we introduce information bottleneck (IB) constraint to ZSL for the first time to preserve essential attribute information during the mapping. Specifically, we utilize the uncertainty estimation and the wake-sleep procedure to alleviate the feature noises and improve model abstraction capability. In addition, our method can be easily extended to transductive ZSL setting by generating labels for unseen images. We then introduce a robust loss to solve this label noise problem. Extensive experimental results show that our method outperforms the state-of-the-art methods in different ZSL settings on most benchmark datasets. The code will be available at https://github.com/osierboy/IBZSL.
Generalized zero-shot learning (GZSL) aims to recognize objects from both seen and unseen classes, when only the labeled examples from seen classes are provided. Recent feature generation methods learn a generative model that can synthesize the missi
Zero-shot learning transfers knowledge from seen classes to novel unseen classes to reduce human labor of labelling data for building new classifiers. Much effort on zero-shot learning however has focused on the standard multi-class setting, the more
Modern deep learning methods have achieved great success in machine learning and computer vision fields by learning a set of pre-defined datasets. Howerver, these methods perform unsatisfactorily when applied into real-world situations. The reason of
Zero-shot learning (ZSL) is a framework to classify images belonging to unseen classes based on solely semantic information about these unseen classes. In this paper, we propose a new ZSL algorithm using coupled dictionary learning. The core idea is
From the beginning of zero-shot learning research, visual attributes have been shown to play an important role. In order to better transfer attribute-based knowledge from known to unknown classes, we argue that an image representation with integrated