ﻻ يوجد ملخص باللغة العربية
Zero-shot learning transfers knowledge from seen classes to novel unseen classes to reduce human labor of labelling data for building new classifiers. Much effort on zero-shot learning however has focused on the standard multi-class setting, the more challenging multi-label zero-shot problem has received limited attention. In this paper we propose a transfer-aware embedding projection approach to tackle multi-label zero-shot learning. The approach projects the label embedding vectors into a low-dimensional space to induce better inter-label relationships and explicitly facilitate information transfer from seen labels to unseen labels, while simultaneously learning a max-margin multi-label classifier with the projected label embeddings. Auxiliary information can be conveniently incorporated to guide the label embedding projection to further improve label relation structures for zero-shot knowledge transfer. We conduct experiments for zero-shot multi-label image classification. The results demonstrate the efficacy of the proposed approach.
Multi-label zero-shot classification aims to predict multiple unseen class labels for an input image. It is more challenging than its single-label counterpart. On one hand, the unconstrained number of labels assigned to each image makes the model mor
While few-shot classification has been widely explored with similarity based methods, few-shot sequence labeling poses a unique challenge as it also calls for modeling the label dependencies. To consider both the item similarity and label dependency,
In this paper, we explore the slot tagging with only a few labeled support sentences (a.k.a. few-shot). Few-shot slot tagging faces a unique challenge compared to the other few-shot classification problems as it calls for modeling the dependencies be
In this paper, we present a novel deep metric learning method to tackle the multi-label image classification problem. In order to better learn the correlations among images features, as well as labels, we attempt to explore a latent space, where imag
In this paper, we propose a novel approach for generalized zero-shot learning in a multi-modal setting, where we have novel classes of audio/video during testing that are not seen during training. We use the semantic relatedness of text embeddings as