ترغب بنشر مسار تعليمي؟ اضغط هنا

Contrastive Embedding for Generalized Zero-Shot Learning

185   0   0.0 ( 0 )
 نشر من قبل Zongyan Han
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Generalized zero-shot learning (GZSL) aims to recognize objects from both seen and unseen classes, when only the labeled examples from seen classes are provided. Recent feature generation methods learn a generative model that can synthesize the missing visual features of unseen classes to mitigate the data-imbalance problem in GZSL. However, the original visual feature space is suboptimal for GZSL classification since it lacks discriminative information. To tackle this issue, we propose to integrate the generation model with the embedding model, yielding a hybrid GZSL framework. The hybrid GZSL approach maps both the real and the synthetic samples produced by the generation model into an embedding space, where we perform the final GZSL classification. Specifically, we propose a contrastive embedding (CE) for our hybrid GZSL framework. The proposed contrastive embedding can leverage not only the class-wise supervision but also the instance-wise supervision, where the latter is usually neglected by existing GZSL researches. We evaluate our proposed hybrid GZSL framework with contrastive embedding, named CE-GZSL, on five benchmark datasets. The results show that our CEGZSL method can outperform the state-of-the-arts by a significant margin on three datasets. Our codes are available on https://github.com/Hanzy1996/CE-GZSL.



قيم البحث

اقرأ أيضاً

Generalized zero-shot learning (GZSL) has achieved significant progress, with many efforts dedicated to overcoming the problems of visual-semantic domain gap and seen-unseen bias. However, most existing methods directly use feature extraction models trained on ImageNet alone, ignoring the cross-dataset bias between ImageNet and GZSL benchmarks. Such a bias inevitably results in poor-quality visual features for GZSL tasks, which potentially limits the recognition performance on both seen and unseen classes. In this paper, we propose a simple yet effective GZSL method, termed feature refinement for generalized zero-shot learning (FREE), to tackle the above problem. FREE employs a feature refinement (FR) module that incorporates textit{semantic$rightarrow$visual} mapping into a unified generative model to refine the visual features of seen and unseen class samples. Furthermore, we propose a self-adaptive margin center loss (SAMC-loss) that cooperates with a semantic cycle-consistency loss to guide FR to learn class- and semantically-relevant representations, and concatenate the features in FR to extract the fully refined features. Extensive experiments on five benchmark datasets demonstrate the significant performance gain of FREE over its baseline and current state-of-the-art methods. Our codes are available at https://github.com/shiming-chen/FREE .
Generalized Zero-Shot Learning (GZSL) targets recognizing new categories by learning transferable image representations. Existing methods find that, by aligning image representations with corresponding semantic labels, the semantic-aligned representa tions can be transferred to unseen categories. However, supervised by only seen category labels, the learned semantic knowledge is highly task-specific, which makes image representations biased towards seen categories. In this paper, we propose a novel Dual-Contrastive Embedding Network (DCEN) that simultaneously learns task-specific and task-independent knowledge via semantic alignment and instance discrimination. First, DCEN leverages task labels to cluster representations of the same semantic category by cross-modal contrastive learning and exploring semantic-visual complementarity. Besides task-specific knowledge, DCEN then introduces task-independent knowledge by attracting representations of different views of the same image and repelling representations of different images. Compared to high-level seen category supervision, this instance discrimination supervision encourages DCEN to capture low-level visual knowledge, which is less biased toward seen categories and alleviates the representation bias. Consequently, the task-specific and task-independent knowledge jointly make for transferable representations of DCEN, which obtains averaged 4.1% improvement on four public benchmarks.
Suffering from the semantic insufficiency and domain-shift problems, most of existing state-of-the-art methods fail to achieve satisfactory results for Zero-Shot Learning (ZSL). In order to alleviate these problems, we propose a novel generative ZSL method to learn more generalized features from multi-knowledge with continuously generated new semantics in semantic-to-visual embedding. In our approach, the proposed Multi-Knowledge Fusion Network (MKFNet) takes different semantic features from multi-knowledge as input, which enables more relevant semantic features to be trained for semantic-to-visual embedding, and finally generates more generalized visual features by adaptively fusing visual features from different knowledge domain. The proposed New Feature Generator (NFG) with adaptive genetic strategy is used to enrich semantic information on the one hand, and on the other hand it greatly improves the intersection of visual feature generated by MKFNet and unseen visual faetures. Empirically, we show that our approach can achieve significantly better performance compared to existing state-of-the-art methods on a large number of benchmarks for several ZSL tasks, including traditional ZSL, generalized ZSL and zero-shot retrieval.
We propose a novel Generalized Zero-Shot learning (GZSL) method that is agnostic to both unseen images and unseen semantic vectors during training. Prior works in this context propose to map high-dimensional visual features to the semantic domain, we believe contributes to the semantic gap. To bridge the gap, we propose a novel low-dimensional embedding of visual instances that is visually semantic. Analogous to semantic data that quantifies the existence of an attribute in the presented instance, components of our visual embedding quantifies existence of a prototypical part-type in the presented instance. In parallel, as a thought experiment, we quantify the impact of noisy semantic data by utilizing a novel visual oracle to visually supervise a learner. These factors, namely semantic noise, visual-semantic gap and label noise lead us to propose a new graphical model for inference with pairwise interactions between label, semantic data, and inputs. We tabulate results on a number of benchmark datasets demonstrating significant improvement in accuracy over state-of-the-art under both semantic and visual supervision.
131 - Kun Wei , Cheng Deng , Xu Yang 2020
Modern deep learning methods have achieved great success in machine learning and computer vision fields by learning a set of pre-defined datasets. Howerver, these methods perform unsatisfactorily when applied into real-world situations. The reason of this phenomenon is that learning new tasks leads the trained model quickly forget the knowledge of old tasks, which is referred to as catastrophic forgetting. Current state-of-the-art incremental learning methods tackle catastrophic forgetting problem in traditional classification networks and ignore the problem existing in embedding networks, which are the basic networks for image retrieval, face recognition, zero-shot learning, etc. Different from traditional incremental classification networks, the semantic gap between the embedding spaces of two adjacent tasks is the main challenge for embedding networks under incremental learning setting. Thus, we propose a novel class-incremental method for embedding network, named as zero-shot translation class-incremental method (ZSTCI), which leverages zero-shot translation to estimate and compensate the semantic gap without any exemplars. Then, we try to learn a unified representation for two adjacent tasks in sequential learning process, which captures the relationships of previous classes and current classes precisely. In addition, ZSTCI can easily be combined with existing regularization-based incremental learning methods to further improve performance of embedding networks. We conduct extensive experiments on CUB-200-2011 and CIFAR100, and the experiment results prove the effectiveness of our method. The code of our method has been released.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا