ﻻ يوجد ملخص باللغة العربية
We study the effect of loop corrections to conformal correlators on the celestial sphere at null infinity. We first analyze finite one-loop celestial amplitudes in pure Yang-Mills theory and Einstein gravity. We then turn to our main focus: infrared divergent loop amplitudes in planar $mathcal{N}=4$ super Yang-Mills theory. We compute the celestial one-loop amplitude in dimensional regularization and show that it can be recast as an operator acting on the celestial tree-level amplitude. This extends to any loop order and the re-summation of all planar loops enables us to write down an expression for the all-loop celestial amplitude. Finally, we show that the exponentiated all-loop expression given by the BDS formula gets promoted on the celestial sphere to an operator acting on the tree-level conformal correlation function, thus yielding, the celestial BDS formula.
The analytic structures of scattering amplitudes in gauge theory and gravity are examined on the celestial sphere. The celestial amplitudes in the two theories - computed by employing a regulated Mellin transform - can be compared at low multiplicity
The aim of these Lectures is to provide a brief overview of the subject of asymptotic symmetries of gauge and gravity theories in asymptotically flat spacetimes as background material for celestial holography.
We study chiral deformations of ${cal N}=2$ and ${cal N}=4$ supersymmetric gauge theories obtained by turning on $tau_J ,{rm tr} , Phi^J$ interactions with $Phi$ the ${cal N}=2$ superfield. Using localization, we compute the deformed gauge theory par
Non-commutative corrections to the classical expression for the fuzzy sphere area are found out through the asymptotic expansion for its heat kernel trace. As an important consequence, some quantum gravity deviations in the luminosity of black holes
The influence of a spherical boundary on the vacuum fluctuations of a massive scalar field is investigated in background of $(D+1)$-dimensional Milne universe, assuming that the field obeys Robin boundary condition on the sphere. The normalized mode