ترغب بنشر مسار تعليمي؟ اضغط هنا

Gauge and Gravity Amplitudes on the Celestial Sphere

147   0   0.0 ( 0 )
 نشر من قبل Nikhil Kalyanapuram
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The analytic structures of scattering amplitudes in gauge theory and gravity are examined on the celestial sphere. The celestial amplitudes in the two theories - computed by employing a regulated Mellin transform - can be compared at low multiplicity. It is established by direct computation that up to five external particles, the double copy relations of Kawai, Lewellen and Tye continue to hold identically, modulo certain multiplicative factors which are explicitly determined. Supersymmetric representations of the amplitudes are utilized throughout, manifesting the double copy structure between $mathcal{N}=4$ super Yang-Mills and $mathcal{N}=8$ supergravity on the celestial sphere.

قيم البحث

اقرأ أيضاً

We study the effect of loop corrections to conformal correlators on the celestial sphere at null infinity. We first analyze finite one-loop celestial amplitudes in pure Yang-Mills theory and Einstein gravity. We then turn to our main focus: infrared divergent loop amplitudes in planar $mathcal{N}=4$ super Yang-Mills theory. We compute the celestial one-loop amplitude in dimensional regularization and show that it can be recast as an operator acting on the celestial tree-level amplitude. This extends to any loop order and the re-summation of all planar loops enables us to write down an expression for the all-loop celestial amplitude. Finally, we show that the exponentiated all-loop expression given by the BDS formula gets promoted on the celestial sphere to an operator acting on the tree-level conformal correlation function, thus yielding, the celestial BDS formula.
We present the gravity dual of large N supersymmetric gauge theories on a squashed five-sphere. The one-parameter family of solutions is constructed in Euclidean Romans F(4) gauged supergravity in six dimensions, and uplifts to massive type IIA super gravity. By renormalizing the theory with appropriate counterterms we evaluate the renormalized on-shell action for the solutions. We also evaluate the large N limit of the gauge theory partition function, and find precise agreement.
Celestial amplitudes represent 4D scattering of particles in boost, rather than the usual energy-momentum, eigenstates and hence are sensitive to both UV and IR physics. We show that known UV and IR properties of quantum gravity translate into powerf ul constraints on the analytic structure of celestial amplitudes. For example the soft UV behavior of quantum gravity is shown to imply that the exact four-particle scattering amplitude is meromorphic in the complex boost weight plane with poles confined to even integers on the negative real axis. Would-be poles on the positive real axis from UV asymptotics are shown to be erased by a flat space analog of the AdS resolution of the bulk point singularity. The residues of the poles on the negative axis are identified with operator coefficients in the IR effective action. Far along the real positive axis, the scattering is argued to grow exponentially according to the black hole area law. Exclusive amplitudes are shown to simply factorize into conformally hard and conformally soft factors. The soft factor contains all IR divergences and is given by a celestial current algebra correlator of Goldstone bosons from spontaneously broken asymptotic symmetries. The hard factor describes the scattering of hard particles together with the boost-eigenstate clouds of soft photons or gravitons required by asymptotic symmetries. These provide an IR safe $mathcal{S}$-matrix for the scattering of hard particles.
Celestial and momentum space amplitudes for massless particles are related to each other by a change of basis provided by the Mellin transform. Therefore properties of celestial amplitudes have counterparts in momentum space amplitudes and vice versa . In this paper, we study the celestial avatar of dual superconformal symmetry of $mathcal{N}=4$ Yang-Mills theory. We also analyze various differential equations known to be satisfied by celestial $n$-point tree-level MHV amplitudes and identify their momentum space origins.
On-shell methods have revitalized interest in scattering amplitudes which have, in turn, shed some much needed light on the structure of quantum field theories. These developments have been warmly embraced by the particle physics community. Less so i n the astrophyical and cosmological contexts. As part of an effort to address this imbalance, we illustrate these methods by revisiting two classic problems in gravity: gravitational light-bending and the vDVZ discontinuity of massive gravity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا