ﻻ يوجد ملخص باللغة العربية
We study chiral deformations of ${cal N}=2$ and ${cal N}=4$ supersymmetric gauge theories obtained by turning on $tau_J ,{rm tr} , Phi^J$ interactions with $Phi$ the ${cal N}=2$ superfield. Using localization, we compute the deformed gauge theory partition function $Z(vectau|q)$ and the expectation value of circular Wilson loops $W$ on a squashed four-sphere. In the case of the deformed ${cal N}=4$ theory, exact formulas for $Z$ and $W$ are derived in terms of an underlying $U(N)$ interacting matrix model replacing the free Gaussian model describing the ${cal N}=4$ theory. Using the AGT correspondence, the $tau_J$-deformations are related to the insertions of commuting integrals of motion in the four-point CFT correlator and chiral correlators are expressed as $tau$-derivatives of the gauge theory partition function on a finite $Omega$-background. In the so called Nekrasov-Shatashvili limit, the entire ring of chiral relations is extracted from the $epsilon$-deformed Seiberg-Witten curve. As a byproduct of our analysis we show that $SU(2)$ gauge theories on rational $Omega$-backgrounds are dual to CFT minimal models.
After a very brief recollection of how my scientific collaboration with Ugo started, in this talk I will present some recent results obtained with localization: the deformed gauge theory partition function $Z(vectau|q)$ and the expectation value of c
We study the correlator of concentric circular Wilson loops for arbitrary radii, spatial and internal space separations. For real values of the parameters specifying the dual string configuration, a typical Gross-Ooguri phase transition is observed.
By considering a Gaussian truncation of ${cal N}=4$ super Yang-Mills, we derive a set of Dyson equations that account for the ladder diagram contribution to connected correlators of circular Wilson loops. We consider different numbers of loops, with
We continue our study of the correlators of a recently discovered family of BPS Wilson loops in N=4 supersymmetric U(N) Yang-Mills theory. We perform explicit computations at weak coupling by means of analytical and numerical methods finding agreemen
We study at quantum level correlators of supersymmetric Wilson loops with contours lying on Hopf fibers of $S^3$. In $mathcal{N}=4$ SYM theory the strong coupling analysis can be performed using the AdS/CFT correspondence and a connected classical st