ﻻ يوجد ملخص باللغة العربية
Non-commutative corrections to the classical expression for the fuzzy sphere area are found out through the asymptotic expansion for its heat kernel trace. As an important consequence, some quantum gravity deviations in the luminosity of black holes must appear. We calculate these deviations for a static, spherically symmetric, black-hole with a horizon modeled by a fuzzy sphere. The results obtained could be verified through the radiation of black holes formed in the Large Hadron Collider (LHC).
Using a graphical analysis, we show that for the horizon radius $r_hgtrsim 4.8sqrttheta$, the standard semiclassical Bekenstein-Hawking area law for noncommutative Schwarzschild black hole exactly holds for all orders of $theta$. We also give the cor
We study the quantum geometry of the fuzzy sphere defined as the angular momentum algebra $[x_i,x_j]=2imathlambda_p epsilon_{ijk}x_k$ modulo setting $sum_i x_i^2$ to a constant, using a recently introduced 3D rotationally invariant differential struc
We investigate quantum corrections in non-commutative gauge theory on fuzzy sphere. We study translation invariant models which classically favor a single fuzzy sphere with U(1) gauge group. We evaluate the effective actions up to the two loop level.
We investigate the Teichm{u}ller parameters for a Euclidean multiple BTZ black hole spacetime. To induce a complex structure in the asymptotic boundary of such a spacetime, we consider the limit in which two black holes are at a large distance from e
A distinct visual signature occurs in black holes that are surrounded by optically thin and geometrically thick emission regions. This signature is a sharp-edged dip in brightness that is coincident with the black-hole shadow, which is the projection