ﻻ يوجد ملخص باللغة العربية
Regularizing the input gradient has shown to be effective in promoting the robustness of neural networks. The regularization of the inputs Hessian is therefore a natural next step. A key challenge here is the computational complexity. Computing the Hessian of inputs is computationally infeasible. In this paper we propose an efficient algorithm to train deep neural networks with Hessian operator-norm regularization. We analyze the approach theoretically and prove that the Hessian operator norm relates to the ability of a neural network to withstand an adversarial attack. We give a preliminary experimental evaluation on the MNIST and FMNIST datasets, which demonstrates that the new regularizer can, indeed, be feasible and, furthermore, that it increases the robustness of neural networks over input gradient regularization.
Neural network models and deep models are one of the leading and state of the art models in machine learning. Most successful deep neural models are the ones with many layers which highly increases their number of parameters. Training such models req
The graph Laplacian regularization term is usually used in semi-supervised representation learning to provide graph structure information for a model $f(X)$. However, with the recent popularity of graph neural networks (GNNs), directly encoding graph
Hessian captures important properties of the deep neural network loss landscape. Previous works have observed low rank structure in the Hessians of neural networks. We make several new observations about the top eigenspace of layer-wise Hessian: top
A deep neural network model is a powerful framework for learning representations. Usually, it is used to learn the relation $x to y$ by exploiting the regularities in the input $x$. In structured output prediction problems, $y$ is multi-dimensional a
Recent works have partly attributed the generalization ability of over-parameterized neural networks to frequency bias -- networks trained with gradient descent on data drawn from a uniform distribution find a low frequency fit before high frequency