ﻻ يوجد ملخص باللغة العربية
Recent works have partly attributed the generalization ability of over-parameterized neural networks to frequency bias -- networks trained with gradient descent on data drawn from a uniform distribution find a low frequency fit before high frequency ones. As realistic training sets are not drawn from a uniform distribution, we here use the Neural Tangent Kernel (NTK) model to explore the effect of variable density on training dynamics. Our results, which combine analytic and empirical observations, show that when learning a pure harmonic function of frequency $kappa$, convergence at a point $x in Sphere^{d-1}$ occurs in time $O(kappa^d/p(x))$ where $p(x)$ denotes the local density at $x$. Specifically, for data in $Sphere^1$ we analytically derive the eigenfunctions of the kernel associated with the NTK for two-layer networks. We further prove convergence results for deep, fully connected networks with respect to the spectral decomposition of the NTK. Our empirical study highlights similarities and differences between deep and shallow networks in this model.
Regularizing the input gradient has shown to be effective in promoting the robustness of neural networks. The regularization of the inputs Hessian is therefore a natural next step. A key challenge here is the computational complexity. Computing the H
The classical bias-variance trade-off predicts that bias decreases and variance increase with model complexity, leading to a U-shaped risk curve. Recent work calls this into question for neural networks and other over-parameterized models, for which
Prior work on neural network verification has focused on specifications that are linear functions of the output of the network, e.g., invariance of the classifier output under adversarial perturbations of the input. In this paper, we extend verificat
Recent works have examined how deep neural networks, which can solve a variety of difficult problems, incorporate the statistics of training data to achieve their success. However, existing results have been established only in limited settings. In t
Non-recurring traffic congestion is caused by temporary disruptions, such as accidents, sports games, adverse weather, etc. We use data related to real-time traffic speed, jam factors (a traffic congestion indicator), and events collected over a year