ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Neural Networks Regularization for Structured Output Prediction

163   0   0.0 ( 0 )
 نشر من قبل Soufiane Belharbi
 تاريخ النشر 2015
والبحث باللغة English




اسأل ChatGPT حول البحث

A deep neural network model is a powerful framework for learning representations. Usually, it is used to learn the relation $x to y$ by exploiting the regularities in the input $x$. In structured output prediction problems, $y$ is multi-dimensional and structural relations often exist between the dimensions. The motivation of this work is to learn the output dependencies that may lie in the output data in order to improve the prediction accuracy. Unfortunately, feedforward networks are unable to exploit the relations between the outputs. In order to overcome this issue, we propose in this paper a regularization scheme for training neural networks for these particular tasks using a multi-task framework. Our scheme aims at incorporating the learning of the output representation $y$ in the training process in an unsupervised fashion while learning the supervised mapping function $x to y$. We evaluate our framework on a facial landmark detection problem which is a typical structured output task. We show over two public challenging datasets (LFPW and HELEN) that our regularization scheme improves the generalization of deep neural networks and accelerates their training. The use of unlabeled data and label-only data is also explored, showing an additional improvement of the results. We provide an opensource implementation (https://github.com/sbelharbi/structured-output-ae) of our framework.



قيم البحث

اقرأ أيضاً

In machine learning we often encounter structured output prediction problems (SOPPs), i.e. problems where the output space admits a rich internal structure. Application domains where SOPPs naturally occur include natural language processing, speech r ecognition, and computer vision. Typical SOPPs have an extremely large label set, which grows exponentially as a function of the size of the output. Existing generalization analysis implies generalization bounds with at least a square-root dependency on the cardinality $d$ of the label set, which can be vacuous in practice. In this paper, we significantly improve the state of the art by developing novel high-probability bounds with a logarithmic dependency on $d$. Moreover, we leverage the lens of algorithmic stability to develop generalization bounds in expectation without any dependency on $d$. Our results therefore build a solid theoretical foundation for learning in large-scale SOPPs. Furthermore, we extend our results to learning with weakly dependent data.
Bayesian neural network (BNN) priors are defined in parameter space, making it hard to encode prior knowledge expressed in function space. We formulate a prior that incorporates functional constraints about what the output can or cannot be in regions of the input space. Output-Constrained BNNs (OC-BNN) represent an interpretable approach of enforcing a range of constraints, fully consistent with the Bayesian framework and amenable to black-box inference. We demonstrate how OC-BNNs improve model robustness and prevent the prediction of infeasible outputs in two real-world applications of healthcare and robotics.
143 - Han Yang , Kaili Ma , James Cheng 2020
The graph Laplacian regularization term is usually used in semi-supervised representation learning to provide graph structure information for a model $f(X)$. However, with the recent popularity of graph neural networks (GNNs), directly encoding graph structure $A$ into a model, i.e., $f(A, X)$, has become the more common approach. While we show that graph Laplacian regularization brings little-to-no benefit to existing GNNs, and propose a simple but non-trivial variant of graph Laplacian regularization, called Propagation-regularization (P-reg), to boost the performance of existing GNN models. We provide formal analyses to show that P-reg not only infuses extra information (that is not captured by the traditional graph Laplacian regularization) into GNNs, but also has the capacity equivalent to an infinite-depth graph convolutional network. We demonstrate that P-reg can effectively boost the performance of existing GNN models on both node-level and graph-level tasks across many different datasets.
Approximate inference in deep Bayesian networks exhibits a dilemma of how to yield high fidelity posterior approximations while maintaining computational efficiency and scalability. We tackle this challenge by introducing a novel variational structur ed approximation inspired by the Bayesian interpretation of Dropout regularization. Concretely, we focus on the inflexibility of the factorized structure in Dropout posterior and then propose an improved method called Variational Structured Dropout (VSD). VSD employs an orthogonal transformation to learn a structured representation on the variational noise and consequently induces statistical dependencies in the approximate posterior. Theoretically, VSD successfully addresses the pathologies of previous Variational Dropout methods and thus offers a standard Bayesian justification. We further show that VSD induces an adaptive regularization term with several desirable properties which contribute to better generalization. Finally, we conduct extensive experiments on standard benchmarks to demonstrate the effectiveness of VSD over state-of-the-art variational methods on predictive accuracy, uncertainty estimation, and out-of-distribution detection.
203 - Soufiane Belharbi 2018
Neural network models and deep models are one of the leading and state of the art models in machine learning. Most successful deep neural models are the ones with many layers which highly increases their number of parameters. Training such models req uires a large number of training samples which is not always available. One of the fundamental issues in neural networks is overfitting which is the issue tackled in this thesis. Such problem often occurs when the training of large models is performed using few training samples. Many approaches have been proposed to prevent the network from overfitting and improve its generalization performance such as data augmentation, early stopping, parameters sharing, unsupervised learning, dropout, batch normalization, etc. In this thesis, we tackle the neural network overfitting issue from a representation learning perspective by considering the situation where few training samples are available which is the case of many real world applications. We propose three contributions. The first one presented in chapter 2 is dedicated to dealing with structured output problems to perform multivariate regression when the output variable y contains structural dependencies between its components. The second contribution described in chapter 3 deals with the classification task where we propose to exploit prior knowledge about the internal representation of the hidden layers in neural networks. Our last contribution presented in chapter 4 showed the interest of transfer learning in applications where only few samples are available. In this contribution, we provide an automatic system based on such learning scheme with an application to medical domain. In this application, the task consists in localizing the third lumbar vertebra in a 3D CT scan. This work has been done in collaboration with the clinic Rouen Henri Becquerel Center who provided us with data.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا