ترغب بنشر مسار تعليمي؟ اضغط هنا

Pricing and Budget Allocation for IoT Blockchain with Edge Computing

90   0   0.0 ( 0 )
 نشر من قبل Xingjian Ding
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Attracted by the inherent security and privacy protection of the blockchain, incorporating blockchain into Internet of Things (IoT) has been widely studied in these years. However, the mining process requires high computational power, which prevents IoT devices from directly participating in blockchain construction. For this reason, edge computing service is introduced to help build the IoT blockchain, where IoT devices could purchase computational resources from the edge servers. In this paper, we consider the case that IoT devices also have other tasks that need the help of edge servers, such as data analysis and data storage. The profits they can get from these tasks is closely related to the amounts of resources they purchased from the edge servers. In this scenario, IoT devices will allocate their limited budgets to purchase different resources from different edge servers, such that their profits can be maximized. Moreover, edge servers will set best prices such that they can get the biggest benefits. Accordingly, there raise a pricing and budget allocation problem between edge servers and IoT devices. We model the interaction between edge servers and IoT devices as a multi-leader multi-follower Stackelberg game, whose objective is to reach the Stackelberg Equilibrium (SE). We prove the existence and uniqueness of the SE point, and design efficient algorithms to reach the SE point. In the end, we verify our model and algorithms by performing extensive simulations, and the results show the correctness and effectiveness of our designs.



قيم البحث

اقرأ أيضاً

115 - Jianxiong Guo , Weili Wu 2021
In recent years, the blockchain-based Internet of Things (IoT) has been researched and applied widely, where each IoT device can act as a node in the blockchain. However, these lightweight nodes usually do not have enough computing power to complete the consensus or other computing-required tasks. Edge computing network gives a platform to provide computing power to IoT devices. A fundamental problem is how to allocate limited edge servers to IoT devices in a highly untrustworthy environment. In a fair competition environment, the allocation mechanism should be online, truthful, and privacy safe. To address these three challenges, we propose an online multi-item double auction (MIDA) mechanism, where IoT devices are buyers and edge servers are sellers. In order to achieve the truthfulness, the participants private information is at risk of being exposed by inference attack, which may lead to malicious manipulation of the market by adversaries. Then, we improve our MIDA mechanism based on differential privacy to protect sensitive information from being leaked. It interferes with the auction results slightly but guarantees privacy protection with high confidence. Besides, we upgrade our privacy-preserving MIDA mechanism such that adapting to more complex and realistic scenarios. In the end, the effectiveness and correctness of algorithms are evaluated and verified by theoretical analysis and numerical simulations.
228 - Liya Xu , Mingzhu Ge , Weili Wu 2020
Mining in the blockchain requires high computing power to solve the hash puzzle for example proof-of-work puzzle. It takes high cost to achieve the calculation of this problem in devices of IOT, especially the mobile devices of IOT. It consequently r estricts the application of blockchain in mobile environment. However, edge computing can be utilized to solve the problem for insufficient computing power of mobile devices in IOT. Edge servers can recruit many mobile devices to contribute computing power together to mining and share the reward of mining with these recruited mobile devices. In this paper, we propose an incentivizing mechanism based on edge computing for mobile blockchain. We design a two-stage Stackelberg Game to jointly optimize the reward of edge servers and recruited mobile devices. The edge server as the leader sets the expected fee for the recruited mobile devices in Stage I. The mobile device as a follower provides its computing power to mine according to the expected fee in Stage. It proves that this game can obtain a uniqueness Nash Equilibrium solution under the same or different expected fee. In the simulation experiment, we obtain a result curve of the profit for the edge server with the different ratio between the computing power from the edge server and mobile devices. In addition, the proposed scheme has been compared with the MDG scheme for the profit of the edge server. The experimental results show that the profit of the proposed scheme is more than that of the MDG scheme under the same total computing power.
Mobile edge computing (MEC) has been envisioned as a promising paradigm to handle the massive volume of data generated from ubiquitous mobile devices for enabling intelligent services with the help of artificial intelligence (AI). Traditionally, AI t echniques often require centralized data collection and training in a single entity, e.g., an MEC server, which is now becoming a weak point due to data privacy concerns and high data communication overheads. In this context, federated learning (FL) has been proposed to provide collaborative data training solutions, by coordinating multiple mobile devices to train a shared AI model without exposing their data, which enjoys considerable privacy enhancement. To improve the security and scalability of FL implementation, blockchain as a ledger technology is attractive for realizing decentralized FL training without the need for any central server. Particularly, the integration of FL and blockchain leads to a new paradigm, called FLchain, which potentially transforms intelligent MEC networks into decentralized, secure, and privacy-enhancing systems. This article presents an overview of the fundamental concepts and explores the opportunities of FLchain in MEC networks. We identify several main topics in FLchain design, including communication cost, resource allocation, incentive mechanism, security and privacy protection. The key solutions for FLchain design are provided, and the lessons learned as well as the outlooks are also discussed. Then, we investigate the applications of FLchain in popular MEC domains, such as edge data sharing, edge content caching and edge crowdsensing. Finally, important research challenges and future directions are also highlighted.
145 - Lu Hou , Kan Zheng , Zhiming Liu 2021
Efficiency and security have become critical issues during the development of the long-range (LoRa) system for Internet-of-Things (IoT) applications. The centralized work method in the LoRa system, where all packages are processed and kept in the cen tral cloud, cannot well exploit the resources in LoRa gateways and also makes it vulnerable to security risks, such as data falsification or data loss. On the other hand, the blockchain has the potential to provide a decentralized and secure infrastructure for the LoRa system. However, there are significant challenges in deploying blockchain at LoRa gateways with limited edge computing abilities. This article proposes a design and implementation of the blockchain-enabled LoRa system with edge computing by using the open-source Hyperledger Fabric, which is called as HyperLoRa. According to different features of LoRa data, a blockchain network with multiple ledgers is designed, each of which stores a specific kind of LoRa data. LoRa gateways can participate in the operations of the blockchain and share the ledger that keep the time-critical network data with small size. Then, the edge computing abilities of LoRa gateways are utilized to handle the join procedure and application packages processing. Furthermore, a HyperLoRa prototype is implemented on embedded hardware, which demonstrates the feasibility of deploying the blockchain into LoRa gateways with limited computing and storage resources. Finally, various experiments are conducted to evaluate the performances of the proposed LoRa system.
Authorization or access control limits the actions a user may perform on a computer system, based on predetermined access control policies, thus preventing access by illegitimate actors. Access control for the Internet of Things (IoT) should be tailo red to take inherent IoT network scale and device resource constraints into consideration. However, common authorization systems in IoT employ conventional schemes, which suffer from overheads and centralization. Recent research trends suggest that blockchain has the potential to tackle the issues of access control in IoT. However, proposed solutions overlook the importance of building dynamic and flexible access control mechanisms. In this paper, we design a decentralized attribute-based access control mechanism with an auxiliary Trust and Reputation System (TRS) for IoT authorization. Our system progressively quantifies the trust and reputation scores of each node in the network and incorporates the scores into the access control mechanism to achieve dynamic and flexible access control. We design our system to run on a public blockchain, but we separate the storage of sensitive information, such as users attributes, to private sidechains for privacy preservation. We implement our solution in a public Rinkeby Ethereum test-network interconnected with a lab-scale testbed. Our evaluations consider various performance metrics to highlight the applicability of our solution for IoT contexts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا